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What is Missing Data? (Theory)

* MCAR

* MAR

* MNAR

https://github.com/ScottOatley/YouthTransitions/tree/main/Q-Step Influencing the world since 1583
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Why Should we care about Missing Data?

* ‘Flipping” — where missingness flips the substantive significance of a finding from
positive to negative or vice versa

* ‘Flopping’ — where missingness minimises or over-empahsises the size of the
substrative finding

* ‘Flip-Flopping” — where missingness flips the substantive significance and
minimises/over emphasises the result
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What does this all mean?

* We can’t ignore missing data

* And yet most studies do

* “I've looked at the missingness in my data and confirmed there will be no bias...”

https://qithub.com/ScottOatley/YouthTransitions/tree/main/Q-Step Influencing the world since 1583
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How to handle missing data?

e Several approaches

* Some good

* Some bad

* Some ugly

https://github.com/ScottOatley/YouthTransitions/tree/main/Q-Step
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The Bad

e Listwise Deletion

* This just ignores the issue
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The Ugly

* Recoding Missingness to a single value

e Say you have a binary independent variable where all missingness occurs in model
e Code all missingness = 0 in that variable
e Code all missingness =1 in that variable
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The Ugly

* Single mean/modal imputation
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The Ugly

e Multiple Imputation with zero auxiliary variables
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The Good

* Full Information Maximum Likelihood (FIML)
e (Or MLMV in stata)

e Uses SEM framework

e Can’t use for non-linear models in Stata (Can in MPLUS)
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The Good

* Multiple Imputation with auxiliary variables

https://github.com/ScottOatley/YouthTransitions/tree/main/Q-Step Influencing the world since 1583
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Multiple good ways to handle missing data?

* Multiple Imputation versus FIML

https://qithub.com/ScottOatley/YouthTransitions/tree/main/Q-Step Influencing the world since 1583
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Table 1: Simulation Regression Models Using a MCAR Principle

Missingness Imputed with
Complete Introduced at Single Use no auxiliary Imputed with
Records 'God Independent All Missingness  All Missingness Modal variables and  Imputed with 100
Model' Complete SEM Variable 3 coded as =0 coded as =1 Imputation FIML 10 imputations 10 imputations  imputations
Independent
Variable 1 -0.18 *** -0.18 *** -0.18 *** -0.26 *** -0.26 *** -0.18 *** -0.18 *** -0.17 *** -0.18 *** -0.18 ***
(0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
Independent
Variable 2 -0.19 *** -0.19 *** -0.20 *** -0.26 *** -0.26 *** -0.20 *** -0.19 *** -0.19 *** -0.20 *** -0.20 ***
(0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
Independent
Variable 3 -0.19 *** -0.19 *** -0.20 *** -0.06 *** -0.06 *** -0.20 *** -0.20 *** -0.20 *** -0.19 *** -0.19 ***
(0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
Intercept 1.15 *** 1.15 *** 1.16 *** 1.29 *** 1.31 *** 1.16 *** 1.15 *** 1.15 *** 1.16 *** 1.16 ***
(0.02) (0.02) (0.03) (0.02) (0.01) (0.03) (0.02) (0.02) (0.02) (0.02)
Number of
observations 1000 1000 512 1000 1000 512 1000 1000 1000 1000

**% p<.001, ** p<.01, * p<.05
Data Source: Simulation using a MCAR principle. 51 per cent missingness introduced.
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Table 2: Simulation Regression Models Using a MAR Principle

Missingness
Complete Introduced at Single Use Imputed with no  Imputed with
Records 'God Independent  All Missingness  All Missingness Modal auxiliary variables 10
Model' Complete SEM Variable 3 coded as =0 coded as =1 Imputation FIML and 10 imputations  imputations
Independent
Variable 1 [-0.19,-0.19]  [-0.19,-0.19]  [-0.10,-0,10] [-0.28,-0.27] [-0.19,-0.19] [-0.28,-0.27]  [-0.12,-0.12] [-0.20,-0.20]  [-0.19,-0.18]
[(0.02,0.02)] [(0.02,0.02)] [(0.01,0.01)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)]
Independent
Variable 2 [-0.19,-0.19]  [-0.19,-0.19]  [-0.10,-0,10] [-0.28,-0.28] [-0.19,-0.19] [-0.28,-0.28]  [-0.12,-0.12] [-0.18,-0.18]  [-0.19,-0.19]
[(0.02,0.02)] [(0.02,0.02)] [(0.01,0.01)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)]
Independent
Variable 3 [-0.19,-0.19]  [-0.19,-0.19]  [-0.10,-0,10] [0.07,0.07] [-0.19,-0.19] [0.07,0.07]  [-0.25,-0.25] [-0.20,-0.20]  [-0.19,-0.19]
[(0.02,0.02)] [(0.02,0.02)] [(0.01,0.01)] [(0.02,0.02)] [(0.02,0.02)] [(0.02,0.02)] [(0.01.0.01)] [(0.02,0.02)] [(0.02,0.02)]
Number of
observations 1000 1000 513 1000 1000 1000 1000 1000 1000

*%% pe 001, ** p<.01, * p<.05
Data Source: Simulation using a MAR principle. 51 per cent missingness introduced.

Imputed with
100
imputations

[-0.20,-0.20]
[(0.02,0.02)]

[-0.19,-0.19]
[(0.02,0.02)]

[-0.18,-0.18]
[(0.02,0.02)]

1000
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Thank You

* Any Questions?
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