WEBERIAN SOCIAL STATUS REIMAGINED: A SOCIOLOGICAL AND EMPIRICAL CRITIQUE OF EXISTING STATUS MEASURES AND A VIABLE ALTERNATIVE

Scott Oatley

PURPOSE

- Social Status Matters
- Often when we invoke social class we actually mean social status
- Current social status measures are flawed
- Weberian measures offer the best way of capturing social status

METHODS

- Duplicate analysis from Chan and Goldthorpe (2004, 2007)
- Improve upon their initial method
- Run some sensitivity tests with my new measure, theirs, and Cambridge scale for good measure

WHAT IS WRONG WITH CHAN-GOLDTHORPE SCALE?

- Claims to be Weberian
- Doesn't include the important Weberian bits
- Vaguely Weberian measure that uses Weberian social theory to justify its existence
- Just won't do

WEBER AND SOCIAL STATUS

- Status as 'real communities'
- Culmination of social honour makes up our status position
- Social Honour is derived through specific acts and behaviours in accordance to a particular grouping

WHAT IS SOCIAL STATUS?

- Homophilic Association
- Social Intercourse
- Monopolistic Acquisition
- Cultural Consumption

HOMOPHILIC ASSOCIATION

• Intermarriage

SOCIAL INTERCOURSE

- Individuals social circle
- Who do we hang out with?

MONOPOLISTIC ACQUISITION

Monopolisation of key resources or opportunities

CULTURAL CONSUMPTION

• The types of things individuals choose to invest their resources in

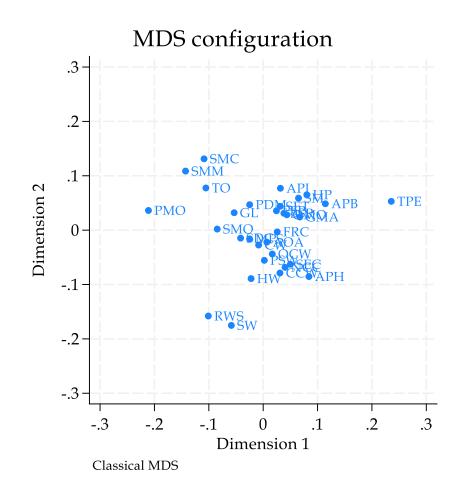
PRIMARY CONTENTION

- Social Status is best understood via Weberian lens
- Current Weberian measures Chan-Goldthorpe Scale is inadequate
- My new scale is adequate

METHODS

- Multi-Dimensional Scaling (MDSCAL)
- Factor Analysis
- Z_standardization
- Linear, Logistic, and Ordinal Logistic Regression Models

DATA


- BHPS wave j exact same dataset Chan and Goldthorpe (2004) use in original study (I adjust for complex survey design which they did not)
- Also use British Social Attitudes Study 2001 to duplicate analysis used in Chan and Goldthorpe (200&)

A LITTLE ON MDSCAL

- A means of visualizing the level of similarity of individual cases of a data set
- contingency table constructed of current occupational title of individual versus current occupational title of partners.
- First 'outflow' percentages were calculated from the contingency table
- construct a matrix of marriage partners by occupational title
- This provided the index of dissimilarity using the half-matrix at the diagonal to input into MDSCAL analysis

NOTE ON CONTINGENCY TABLE

Code	Title	SOC codes
GMS	General managers and administrators	10, 13, 15
PDM	Plant, depot and site managers	11,14,16
SM	Specialist managers	12
MPS	Managers and proprietors in services	17
омо	Managers and officials, not elsewhere classified	19
SET	Scientists, engineers and technologists	20,21
HP	Higher professionals	22,24,25,26,27,29
TPE	Teachers and other professionals in education	23
API	Associate professionals in industry	30,31,32,33,39
APH	Associate professionals in health and welfare	34,37
AP	Associate professionals in business	35,36,38
AOA	Administrative officers and assistants	40
NCC	Numerical clerks and cashiers	41
FRC	Filing and record clerks	42
ocw	Other clerical workers	43
SDC	Store and dispatch clerks	44,49
SEC	Secretaries and receptionists	45,46
SMC	Skilled and related manual workers in construction and maintenance	50,52
SMM	Skilled and related manual workers in metal trade	51,53,54
SMO	Skilled and related manual workers not elsewhere classified	55,56,57,58,59
PSP	Protective service personnel	60,61
cw	Catering workers	62
PSW	Personal service workers	63,66,67,69
нพ	Health workers	64
ccw	Childcare workers	65
BSR	Buyers and sales representatives	70,71
sw	Sales workers	72, 73,79
PNO	Plant and machine operatives	80,81,82,83,84,85,86,89
то	Transport operatives	87,88
GL	General labourers	90,91,92,93,99
RWS	Routine workers in services	94,95

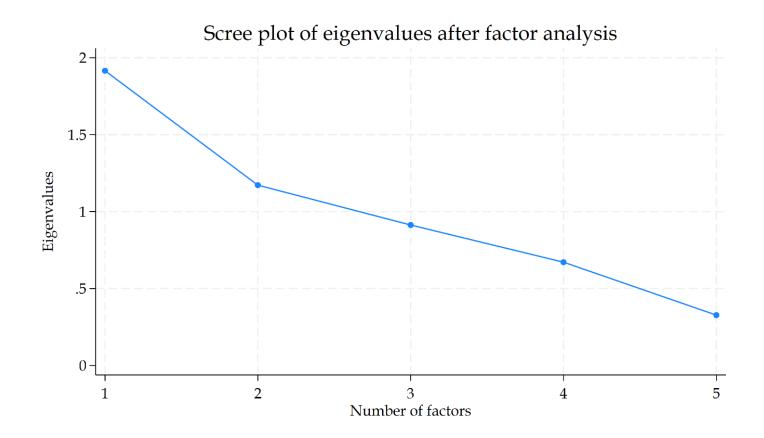
CONTINUING WITH STATUS CONSTRUCTION

- four key aspects of Weberian social status: homophily, closeness, cultural consumption, and monopolistic acquisition
- Homophily constructed via MDSCAL
 - Axis I

CULTURAL CONSUMPTION

- Sum score of consumption measures:
 - created through the work of Bourduisan inspired consumption practices as operationalised in Savage et al(Savage, Warde and Devine, 2005; Bourdieu, 2013; Payne, 2013; Savage *et al.*, 2013)
 - Two measures created
 - Highbrow
 - Emerging

CLOSENESS

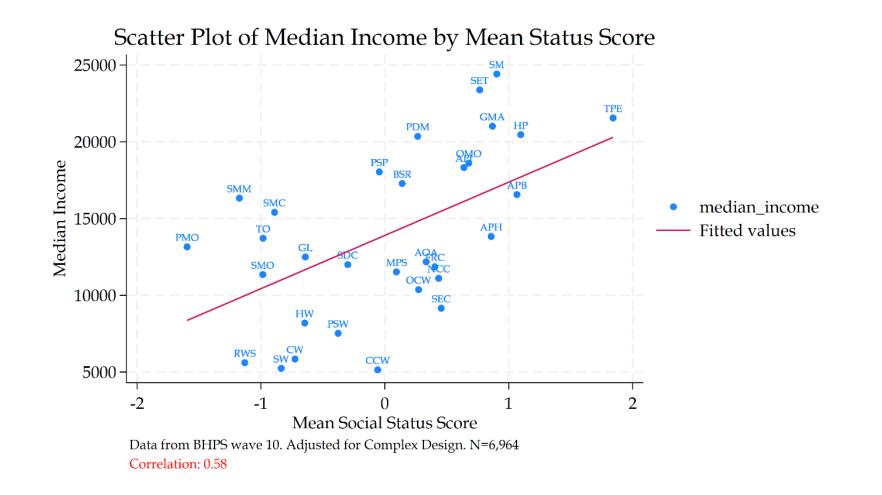

• Sum score of level of interaction with close friends

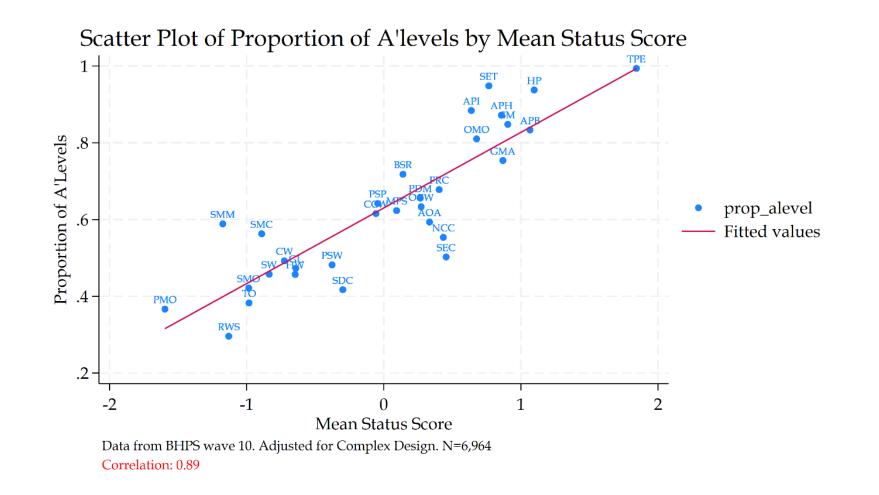
MONOPOLISTIC ACQUISITION

- Sum score of traits (positive means better acquisition strength):
 - Degree ownership
 - Salary/hourly paid
 - Manual/non-manual
 - Recipient of welfare/not

FACTOR ANALYSIS

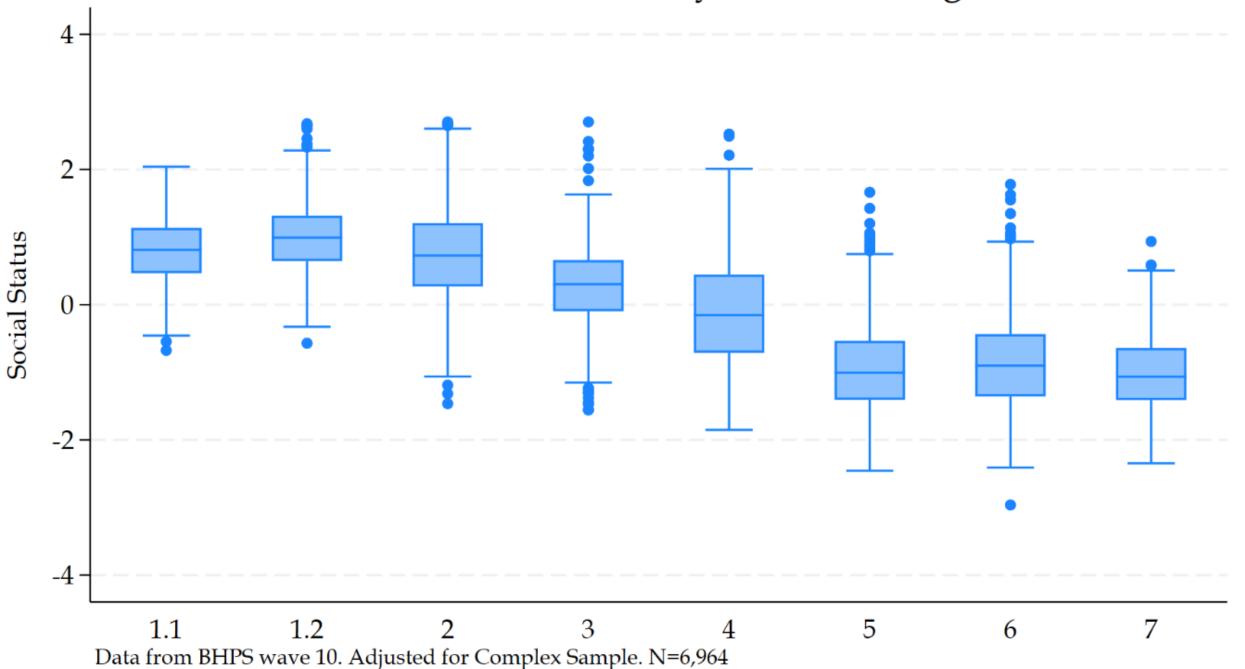
- All five sum scores were standardized to provide equal weighting
- orthogonal varimax rotation
 - This involves scaling the loadings by dividing them by the corresponding communality
- Two factors retained
- Factor one loads all variables well except for emerging cultural consumption

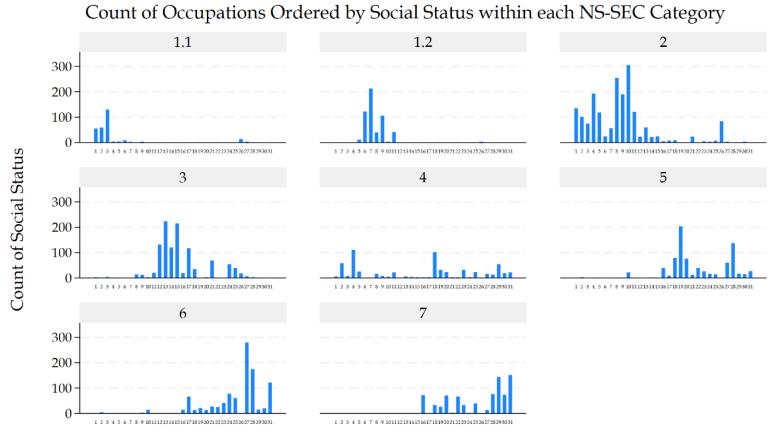

Rank	Occupation	Mean
I	TPE	1.84
2	HP	1.1
3	APB	1.07
4	SM	0.9
5	GMA	0.87
6	APH	0.86
7	SET	0.77
8	OMO	0.68
9	API	0.64
10	SEC	0.45
11	NCC	0.43
12	FRC	0.4
13	AOA	0.33
14	PDM	0.27
15	OCW	0.27
16	BSR	0.14
17	MPS	0.09
18	PSP	-0.04
19	CCW	-0.06
20	SDC	-0.3
21	PSW	-0.38
22	GL	-0.64
23	HW	-0.65
24	CW	-0.72
25	SW	-0.84
26	SMC	-0.89
27	ТО	-0.98
28	SMO	-0.98
29	RWS	-1.13
30	SMM	-1.17
31	PMO	-1.6


Rank	Chan-Goldthorpe Scale	z mean	Own Analysis	Rank Change from Chan	z mean	Cambridge Scale	Rank Change from Chan	z mean
I	HP	1.22	TPE	∱3	2.05	TPE	<u></u> ↑3	1.86
2	APB	1.19	HP	↓I	1.22	HP	↓I	1.83
	SM	1.01	APB	↓I	1.19	OMO	<u></u> ↑6	1.23
	TPE	2.05	SM	↓I	1.01	SET	<u>↑</u> 2	1.19
	GMA	0.97	GMA	-	0.97	GMA	-	1.13
	SET	0.85	APH	↑7	0.95	SM	↓3	I
	API	0.71	SET	↓I	0.85	APB	↓5	0.78
	FRC	0.45	OMO	↑I	0.75	BSR	∱9	0.56
	OMO	0.75	API	↓2	0.71	APH	↑4	0.55
0	PSP	-0.05	SEC	∱5	0.51	PDM	↑I0	0.53
I	PSW	-0.42	NCC	∱3	0.48	API	↓4	0.52
2	AOA	0.37	FRC	↓4	0.45	SEC	∱3	0.48
3	APH	0.95	AOA	↓I	0.37	AOA	↓I	0.23
4	NCC	0.48	OCW	12	0.3	NCC	-	0.19
5	SEC	0.51	PDM	∱5	0.3	MPS	↑4	0.04
6	OCW	0.3	BSR	<u>↑</u> I	0.16	OCW	-	-0.02
7	BSR	0.16	MPS	12	0.1	CCW	<u>↑</u> I	-0.1
8	CCW	-0.06	PSP	↓8	-0.05	SW	∱3	-0.34
9	MPS	0.1	CCW	↓I	-0.06	PSW	↓7	-0.36
0	PDM	0.3	SDC	∱5	-0.33	FRC	↓12	-0.48
I	SW	-0.93	PSW	↓10	-0.42	PSP	↓II	-0.5
2	HW	-0.72	GL	↑9	-0.71	CW	12	-0.63
3	RVVS	-1.26	HW	↓I	-0.72	SMM	<u>↑</u> 6	-0.68
4	CW	-0.81	CW	-	-0.81	HW	↓2	-0.72
5	SDC	-0.33	SW	↓4	-0.93	SMO	∱ I	-0.77
6	SMO	-1.1	SMC	12	-0.99	SMC	12	-0.77
7	ТО	-1.09	ТО	-	-1.09	SDC	↓2	-0.99
8	SMC	-0.99	SMO	↓2	-1.1	RWS	↓5	-1.19
9	SMM	-1.31	RWS	↓6	-1.26	ТО	↓2	-1.2
0	PMO	-1.78	SMM	 ↓I	-1.31	PMO	-	-1.22
1	GL	-0.71	PMO	 ↑I	-1.78	GL	-	-1.3

Rank	Own Analysis	Example Occupations	Level of Manual Labour
I	TPE	College lecturers, education officers and inspectors, school teachers	I
2	HP	chartered accountants, clergy, medical practitioners, solicitors	1
3	APB	Journalists, investment analysts, insurance brokers, designers	1
4	SM	company treasurers, financial managers, computer systems managers, personnel managers	l
5	GMA	Bank and building society managers, general managers in industry, national and local government officers	1
6	APH	Community workers, nurses, occupational therapists, youth workers	2
7	SET	Civil and structural engineers, clinical biochemists, industrial chemists, planning engineers, software engineers	l
8	OMO	Security managers, cleaning managers	2
9	API	Computer analysts and programmers, quantity surveyors, vocational and industrial trainers	l
10	SEC	Personal assistants, receptionists, secretaries, word processor operators	2
П	NCC	Accounts assistants, bank clerks	2
12	FRC	Conveyancing clerks, computer clerks, library assistants	2
13	AOA	Clerical officers in national and local government	2
14	OCW	General assistants, commercial and clerical assistants	2
15	PDM	Clerks of works, farm managers, maintenance managers, transport managers, works managers	2
16	BSR	Buyers and purchasing officers, technical sales representatives, wholesale representatives	2
17	MPS	Catering managers, hoteliers, publicans, shopkeepers and managers	2
18	PSP	Service and police officers, security guards	3
19	CCW	Educational assistants, nursery nurses	2
20	SDC	Despatch and production control clerks, storekeepers	3
21	PSW	Caretakers and housekeepers, hairdressers and beauticians, travel attendants, undertakers	3
22	GL	Agricultural workers, factory labourers, goods porters, refuse collectors	4
23	HW	Ambulance staff, dental nurses, nursing auxiliaries	3
24	CW	Bar staff, chefs, cooks, waiters and waitresses	3
25	SW	Cash desk and check-out operators, sales and shop assistants, window dressers	3
26	SMC	Bricklayers, electricians, painters and decorators, plasterers, roofers, telephone repairmen	4
27	ТО	Bus and coach drivers, lorry and van drivers, taxi drivers	4
28	SMO	Gardeners and groundsmen, printers, textile workers, woodworkers	4
29	RWS	Car park attendants, cleaners, counter-hands, couriers and messengers, hotel porters, postal workers	3
30	SMM	Fitters, setters, setter-operators, sheet metal workers, turners, welders	4
31	PMO	Assemblers, canners, fillers and packers, food processors, moulders and extruders, routine inspectors and testers	4

SOCIOLOGICAL JUSTIFICATION


- Social Status has to be a viable measure for use in statistical analysis
- Epiphenomenal to social class, education, income
 - The big 3



Division of Labour	NS-SEC	Chan- Goldthorpe	My Scale	Cambridge Scale
White Collar	1.1	0.89	0.78	0.96
	1.2	1.20	1.08	1.42
	2	0.73	0.85	0.78
	3	0.41	0.28	0.06
Petite	4	-0.41	-0.31	-0.19
Bourgeoisie				
Blue Collar	5	-1.04	-1.05	-0.75
	6	-0.57	-0.87	-0.67
	7	-1.00	-0.98	-1.11

Box Plot of Status Score by NS-SEC Categories

Data from BHPS wave 10. Adjusted for Complex Design. N=6,964.

COMPARISONS

- My scale compared alongside the Chan-Goldthorpe scale as well as Cambridge scale (precursor to CAMSIS)
- Comparisons require all scales to be z_standardized

Table 1: Regression Models of relationship between income and education on status measures

					Cambr	idge Scale
	Chan-Goldthorpe					ation #1
	Duplicatio	on #I	Social Status Du	plication #I		
Median Income	-0.00	***	-0.00	***	-0.00	***
	(0.00)		(0.00)		(0.00)	
Proportion of			×			
A'levels	5.20	***	5.12	***	4.27	***
	(0.04)		(0.04)		(0.06)	
Intercept	-2.43	***	-2.75	***	-2.54	***
	(0.02)		(0.02)		(0.02)	
Number of						
observations	6964		6964		6964	
	***	p<.001,**	° p<.01,* p<.05			
Data	Source: BHPS.	Adjusted	for Complex Sam	ole. N=6,964	4	

(0.2 1.2 0. (0.1 2 0. (0.1 2 0. (0.1 3 -0. (0.1 4 -0. (0.1 5 -0. (0.1 5 -0. (0.1 5 -0. (0.1 7 -0. (0.1 (0.1)	41 ** 5) 00 00) 17 0) 31 4) 54	0.21 (0.21) 0.36 * (0.15) 0.00 (0.00) -0.06 (0.11) -0.07 (0.15) -0.16 (0.15) -0.24	0.17 (0.21) 0.35 * (0.15) 0.00 (0.00) -0.13 (0.10) -0.14 (0.15) -0.28 * (0.14)	0.15 (0.22) 0.24 (0.16) 0.00 (0.00) 0.04 (0.10) -0.02 (0.15) -0.08 (0.13)
(0.2 1.2 0. (0.1 2 0. (0.1 2 0. (0.1 3 -0. (0.1 4 -0. (0.1 5 -0. (0.1 5 -0. (0.1 5 -0. (0.1 7 -0. (0.1 6 -0. (0.1 (0.1)	!1) 41 *** 5) 00 00) 17 0) 31 * 4) 54 **** 1)	(0.21) 0.36 * (0.15) 0.00 (0.00) -0.06 (0.11) -0.07 (0.15) -0.16 (0.15)	(0.21) 0.35 * (0.15) 0.00 (0.00) -0.13 (0.10) -0.14 (0.15) -0.28 *	(0.22) 0.24 (0.16) 0.00 (0.00) 0.04 (0.10) -0.02 (0.15) -0.08
1.2 0. (0.1 2 0. (0.1 2 0. (0.1 3 -0. (0.1 4 -0. (0.1 5 -0. (0.1 6 -0. (0.1 7 -0.	41 ** 5) 00 00) 17 0) 31 31 * 4) 54 54 **** 1) 1	0.36 * (0.15) 0.00 (0.00) -0.06 (0.11) -0.07 (0.15) -0.16 (0.15)	0.35 * (0.15) 0.00 (0.00) -0.13 (0.10) -0.14 (0.15) -0.28 *	0.24 (0.16) 0.00 (0.00) 0.04 (0.10) -0.02 (0.15) -0.08
(0.1 2 0. (0.0 3 -0. (0.1 4 -0. (0.1 5 -0. (0.1 5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 (0.1) (0.1	5) 00 00) 17 0) 31 * 4) 54 *** 1)	(0.15) 0.00 (0.00) -0.06 (0.11) -0.07 (0.15) -0.16 (0.15)	(0.15) 0.00 (0.00) -0.13 (0.10) -0.14 (0.15) -0.28 *	(0.16) 0.00 (0.00) 0.04 (0.10) -0.02 (0.15) -0.08
2 0. (0.0 3 -0. (0.1 4 -0. (0.1 5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 7 -0. (0.1 (0.1) (0	00 00) 17 0) 31 * 4) 54 *** 1)	0.00 (0.00) -0.06 (0.11) -0.07 (0.15) -0.16 (0.15)	0.00 (0.00) -0.13 (0.10) -0.14 (0.15) -0.28 *	0.00 (0.00) 0.04 (0.10) -0.02 (0.15) -0.08
(0.0 3 (0.1 4 (0.1 5 (0.1 5 (0.1 6 (0.1 6 (0.1 7 (0.1) (0.1 (0.1 (0.1) (0.1 (0.1) (0.1 (0.1) (0.1 (0.1) (0.1 (0.1) (0.1) (0.1 (0.1) (00) 17 0) 31 * 4) 54 **** 1)	(0.00) -0.06 (0.11) -0.07 (0.15) -0.16 (0.15)	(0.00) -0.13 (0.10) -0.14 (0.15) -0.28 *	(0.00) 0.04 (0.10) -0.02 (0.15) -0.08
3 -0. (0.1 4 -0. (0.1 5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 7 -0. (0.1)	17 0) 31 * 4) 54 *** 1)	-0.06 (0.11) -0.07 (0.15) -0.16 (0.15)	-0.13 (0.10) -0.14 (0.15) -0.28 *	0.04 (0.10) -0.02 (0.15) -0.08
(0.1 4 -0. (0.1 5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 7 -0. (0.1 (0.1) (0) 31 * 4) 54 *** 1)	(0.11) -0.07 (0.15) -0.16 (0.15)	(0.10) -0.14 (0.15) -0.28 *	(0.10) -0.02 (0.15) -0.08
4 -0. (0.1 5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 7 -0. (0.1) (0.1)	31 * 4) 54 *** 1)	-0.07 (0.15) -0.16 (0.15)	-0.14 (0.15) -0.28 *	-0.02 (0.15) -0.08
(0.1 5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 7 -0. (0.1)	4) 54 *** 1)	(0.15) -0.16 (0.15)	(0.15) -0.28 *	(0.15) -0.08
5 -0. (0.1 6 -0. (0.1 7 -0. (0.1 (0.1) (0.1)	54 *** 1)	-0.16 (0.15)	-0.28 *	-0.08
(0.1 6 -0. (0.1 7 -0. (0.1 (0.1)	I)	(0.15)		
6 -0. (0.1 7 -0. (0.1	/	\ /	(0.14)	(0.13)
(0.1 7 -0. (0.1	58 ***	0.24		
7 -0. (0.1		-0.24	-0.39 **	-0.15
(0.1	2)	(0.15)	(0.13)	(0.13)
A A A A A A A A A A A A A A A A A A A	92 ***	-0.55 ***	-0.67 ***	-0.35 *
Social Status	2)	(0.15)	(0.14)	(0.14)
		0.20 ***		
		(0.06)		
Chan-Goldthorpe			0.15 **	
			(0.05)	
Cambridge Scale				0.30 ***
				(0.05)
Intercept I.	28 ***	1.11 ***	1.17 ***	1.05 ***
(0.0	(8)	(0.09)	(0.08)	(0.08)
Number of observations 69		6959 * p<.01,* p<.05	6959	6959

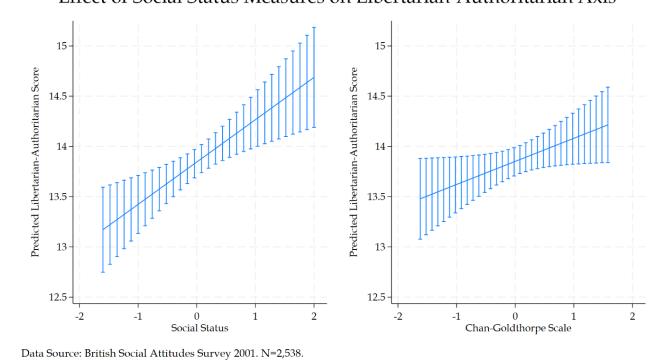
Table 3: Logistic Regression Models of Voting Status (Behaviour)

	Null Model + NS-SEC	Social Status	Chan-Goldthorpe	Cambridge Scale
NS-SEC				
1.1	0.12	0.11	0.16	0.16
	(0.20)	(0.21)	(0.20)	(0.21)
1.2	-0.17	-0.12	-0.08	-0.03
	(0.16)	(0.16)	(0.16)	(0.16)
2	0.00	0.00	0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
3	0.44 ***	0.32 **	0.38 **	0.26 *
	(0.11)	(0.12)	(0.11)	(0.12)
4	0.48 ***	0.22	0.25	0.25
	(0.13)	(0.15)	(0.14)	(0.14)
5	0.67 ***	0.26	0.32 *	0.30 *
	(0.10)	(0.15)	(0.14)	(0.13)
6	0.57 ***	0.20	0.32 *	0.22
	(0.12)	(0.15)	(0.13)	(0.14)
7	0.76 ***	0.36 *	0.43 **	0.31 *
	(0.11)	(0.16)	(0.15)	(0.15)
ocial Status		-0.22 ***		
		(0.06)		
Chan-Goldthorpe			-0.19 ***	
			(0.05)	
Cambridge Scale				-0.24 ***
				(0.06)
ntercept	-1.53 ***	-1.35 ***	-1.39 ***	-1.35 ***
	(0.08)	(0.09)	(0.09)	(0.09)
Number of observations	6707	6707	6707	6707
		01,** p<.01,* p<.05 usted for Complex Sample. N=0	6.959	

Table 4: Ordinal Logistic Regression Mod	els of 'Unfair that wealth buys medical priority'			
(Attitude)	Null Model + NS-SEC	Social Status	Chan-Goldthorpe	Cambridge Scale
NS-SEC	Null Hodel + NS-SEC	Social Status	Chan-Goldtior pe	Cambridge Scale
1.1	0.34 *	0.34 *	0.36 *	0.35 *
	(0.15)	(0.15)	(0.15)	(0.15)
1.2	0.23 *	0.25 *	0.26 *	0.24 *
	(0.11)	(0.11)	(0.11)	(0.11)
2	0.00	0.00	0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
3	-0.18	-0.23 *	-0.20 *	-0.20 *
	(0.09)	(0.09)	(0.09)	(0.09)
4	0.24 **	0.13	0.15	0.22 *
	(0.09)	(0.11)	(0.10)	(0.10)
5	-0.16	-0.34 **	-0.30 *	-0.20
	(0.09)	(0.12)	(0.12)	(0.10)
6	-0.10	-0.26 *	-0.20 *	-0.14
	(0.09)	(0.11)	(0.10)	(0.10)
7	-0.06	-0.23 *	-0.19	-0.
	(0.09)	(0.11)	(0.11)	(0.11)
Social Status		-0.10 *		
		(0.04)		
Chan-Goldthorpe			-0.08 *	
			(0.04)	
Cambridge Scale				-0.03
Cambridge Scale				(0.04)
cutl	-1.32	-1.41	-1.38	-1.35
	(0.07)	(0.07)	(0.07)	(0.07)
cut2	0.52	0.44	0.47	0.50
	(0.06)	(0.07)	(0.06)	(0.07)
cut3	1.26	1.18	1.20	1.24
	(0.06)	(0.07)	(0.06)	(0.07)
cut4	3.71	3.63	3.65	3.68
	(0.11)	(0.12)	(0.12)	(0.11)
Number of observations	6954	6954	6954	6954
	0,01	*** p<.001, ** p<.01, * p<.05	0701	0731
		Data Source: BHPS.Adjusted for Complex Sample	e. N=6,959	
			•	

	Null Model + NS-SEC	Social Status	Chan-Goldthorpe	Cambridge Scale
NS-SEC				
1.1	-1.68 *	-1.68 *	-1.68 *	-1.65 *
	(0.72)	(0.72)	(0.72)	(0.73)
1.2	-0.32	-0.30	-0.33	-0.22
	(0.38)	(0.38)	(0.39)	(0.40)
2	0.00	0.00	0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
3	0.51 *	0.48 *	0.53 *	0.39
	(0.21)	(0.22)	(0.21)	(0.21)
4	-0.74 **	-0.82 **	-0.70 *	-0.91 ***
	(0.27)	(0.29)	(0.28)	(0.26)
5	0.19	0.08	0.25	-0.07
	(0.28)	(0.35)	(0.33)	(0.33)
6	0.91 ***	0.81 **	0.96 ***	0.66 *
	(0.23)	(0.29)	(0.25)	(0.27)
7	0.92 ***	0.81 **	0.99 ***	0.61 *
	(0.22)	(0.31)	(0.29)	(0.29)
Social Status		-0.06		
		(0.12)		
Chan-Goldthorpe			0.04	
			(0.12)	
Cambridge Scale				-0.17
				(0.12)
Intercept	-3.50 ***	-3.45 ***	-3.53 ***	-3.37 ***
	(0.16)	(0.18)	(0.17)	(0.16)
Number of observations	6963	6963	6963	6963
	*** p<.00 l Data Source: BHPS.Adjust	,** p<.01,* p<.05		

Table 6: Ordinal Logistic Regression Models of Views Toward Homosexuality (Attitudes)


	Null Model + NS-SEC	Social Status	Chan-Goldthorpe	Cambridge Scale
NS-SEC				
1.1	-0.12	-0.10	-0.21	-0.17
	(0.13)	(0.13)	(0.13)	(0.12)
1.2	-0.03	-0.14	-0.24	-0.25
	(0.12)	(0.12)	(0.13)	(0.13)
2	0.00	0.00	0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
3	-0.04	0.20 **	0.10	0.22 **
	(0.07)	(0.08)	(0.07)	(0.07)
4	-0.79 ***	-0.28 *	-0.28 *	-0.45 ***
	(0.10)	(0.12)	(0.11)	(0.11)
5	-0.88 ***	-0.06	-0.12	-0.34 **
	(0.10)	(0.13)	(0.12)	(0.11)
6	-0.52 ***	0.22	0.03	-0.00
	(0.09)	(0.11)	(0.10)	(0.11)
7	-0.72 ***	0.08	0.02	-0.05
	(0.09)	(0.12)	(0.12)	(0.11)
Social Status	× ,	0.44 ***	· · · ·	
		(0.04)		
Chan-Goldthorpe			0.44 ***	
·			(0.04)	
Combridge Scale				0.36 ***
Cambridge Scale				(0.05)
cutl	-2.81	-2.47	-2.52	-2.55
Cuti	(0.07)	(0.08)	(0.07)	(0.07)
cut2	-1.89	-1.54	-1.60	-1.63
Cutz	(0.06)	(0.07)	(0.07)	(0.06)
cut3	-0.22	0.15	0.10	0.06
cuts				
cut4	(0.06) 1.30	(0.07) 1.69	(0.06) 1.64	(0.06) 1.60
Cut4				
	(0.06)	(0.06)	(0.06)	(0.06)
Number of observations	6945	6945	6945	6945
		*** p<.001, ** p<.01, * p<.05		

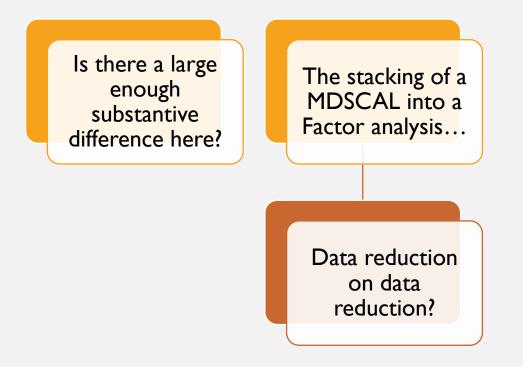
Data Source: BHPS. Adjusted for Complex Sample. N=6,959

	Left-Right Social Status	Left-Right Chan-Goldthorpe	Liber	tarian-Authoritarian Social Status ⊯≋	0.02	Libertarian-Authoritarian Chan-Goldthorpe
Age	-0.00 (0.00)	-0.00 (0.00)	-0.03 (0.00)	***	-0.03 (0.00)	***
Female	0.59 ***	0.59 ****	0.03		0.05	
Income	(0.15)	(0.15)	(0.16)		(0.16)	
<10k	0.00	0.00	0.00		0.00	
10-23k	(0.00) -0.34	(0.00) -0.34	(0.00) -1.06	*	(0.00) -1.08	*
22.446	(0.47) 0.58	(0.47)	(0.48)		(0.48)	
23-44k	(0.46)	0.58 (0.46)	-0.76 (0.47)		-0.76 (0.48)	
>44k	1.20 *	1.19 *	-0.91		-0.92	
	(0.47)	(0.47)	(0.48)		(0.48)	
Highest Qualification						
no qual	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)		0.00 (0.00)	
CSE	0.46	0.47	0.75	*ok	0.77	alak
O'LEVEL	(0.26) 0.87 ***	(0.26) 0.87 *∺*	(0.27) 0.75	yak	(0.27) 0.80	****
OLEVEL	(0.24)	(0.23)	(0.24)		(0.24)	
A'LEVEL	0.85 ***	0.85 ***	1.16	alalak	1.21	slok
	(0.27)	(0.27)	(0.28)		(0.28)	
SUBDEGREE	1.02 ***	1.02 ***	1.31	*olok	1.41	*ole*
DEGREE	(0.27) 0.40	(0.27) 0.40	(0.27) 3.44	yolok	(0.27) 3.59	****
DEGREE	(0.30)	(0.29)	(0.30)		(0.30)	
NS-SEC I.I	0.99 **	0.98 **	0.00		0.00	
1.1	(0.38)	(0.38)	(0.00)		(0.00)	
1.2	0.62 * (0.31)	0.61 (0.31)	-0.40 (0.45)		-0.37 (0.45)	
2	0.00	0.00	-0.35		-0.28	
3	(0.00) -0.09	(0.00) -0.10	(0.39) -0.52		(0.39) -0.58	
3	(0.25)	-0.10 (0.25)	(0.42)		(0.43)	
4	0.73 * (0.32)	0.74 * (0.32)	-0.53 (0.46)		-0.63 (0.47)	
5	-0.88 ***	-0.88 ***	-0.64		-0.88	
6	(0.32) -0.75 *	(0.31) -0.76 ***	(0.47)		(0.47) -0.91	*
0	(0.29)	(0.27)	-0.64 (0.45)		(0.45)	
7	-1.48 *** (0.33)	-1.47 **** (0.32)	-0.28 (0.48)		-0.54 (0.48)	
		(0.52)		yalak	(0.46)	
Social Status	0.03 (0.12)		0.42 (0.12)	***		
			· · ·			
Chan-Goldthorpe		0.04			0.23	*
Intercept	11.06 ****	(0.11) 11.06 ≭∞≈	15.41	300:	(0.12) 15.38	alesiele
	(0.61)	(0.61)	(0.70)		(0.70)	
Number of observations	2538	2538		2538		2538
AIC	13582.82	13582.79		13718.88		13726.47
BIC	13693.77	13693.74		13829.82		13837.42
Adjusted R-squared	0.11	0.11		0.17		0.17
Aujusteu K-squareu	0.11	*** p<.001, ** p<.01, * p<.05		0.17		0.17
		Data Saunaa British Salaid Attitudaa Sumuru 2001 Ni	-2 520			

Data Source: British Social Attitudes Survey 2001. N=2,538

MARGINAL EFFECTS

Effect of Social Status Measures on Libertarian-Authoritarian Axis


CONCLUSIONS

My measure is sociologically compelling

My measure is statistically different from that of the Chan-Goldthorpe scale, and Cambridge scale

These differences appear to provide a more sensitive explanation of variation in models for social status

DRAWBACKS

