

Youth Transitions and Economic Activity: A Reexamination of NCDS data

Scott Oatley soatley@ed.ac.uk

Outline

- Forms part of PhD thesis
- Revisit historical data on youth transitions
- Use contemporary statistical techniques to assess prior literature on topic
- Test underlying influence of structural inequalities on choice and opportunity

A (very short) literature review

- Landscape of the NCDS cohort (Bynner 2005; Blanden 2004)
- Structuration vs Individualisation (Beck 2002; Gayle et al 2009)
- 'New Structuralism' (Devine 2017)
- Life Course (Mayer 2004; Elder 1994)

National Childhood Development Study (NCDS)

- The NCDS follows the lives of all people born in England, Scotland and Wales in one week of March 1958
- It is a nationally representative longitudinal social survey (Power and Elliott 2006)
- Analysis uses data from birth until age 23 accounting for five sweeps

NCDS

Year	1958	1965	1969	1974	1981
Sweep	0	1	2	3	4
Age	Birth	7	11	16	23

Research Questions

- What are the patterns of social inequality in youth transitions?
- How have patterns and trends in youth transitions changed over time?
- How have the social processes that underpin youth transitions changed over time?
- How can youth transitions be more comprehensively understood within a life course perspective?

Overall Research Question

• What are the patterns of social inequality in youth transitions?

• How do Structural Inequalities influence choice and opportunities in the transition from school-to-work?

Proposed model

- Economic Activity
- Educational Attainment
- Sex
- Housing Tenure
- Semi-dominance NS-SEC

	n	%
Economic Activity of Respondent on September when they are 16		
Employment	3,217	38.25%
Non-Traditional Education	744	8.85%
School	2,551	30.33%
Training/Apprenticeships	1,641	19.51%
Unemployment and OLF	258	3.07%
Educational Attainment O-levels		
Less than 5 O-Levels	5,426	64.51%
Five or more 5 O-Levels	2,985	35.49%
Sex of Respondent		
Female	4,215	50.11%
Male	4,196	49.89%
Housing Tenure of Respondent when Child		
Own Home	4,045	48.09%
Don't Own Home	4,366	51.91%
NS-SEC Social Class of Parent when Respondent Child SOC2000		
Large Employers and higher managerial occupations	261	3.10%
Higher professional occupations	410	4.87%
Lower Managerial and professional occupations	1,038	12.34%
Intermediate occupations	805	9.57%
Small employers and own account workers	1,024	12.17%
Lower supervisory and technical occupations	1,372	16.31%
Semi-routine occupations	1,485	17.66%
Routine occupations	2,016	23.97%
RGSC Social Class of Parent when Respondent Child SOC2000		
Professional	362	4.30%
Managerial and Technical	1,720	20.45%
Skilled non-manual	905	10.76%
Skilled manual	3,501	41.62%
Partly skilled	1,205	14.33%
Unskilled	718	8.54%
	Mean	SD
CAMSIS Score of Parent when Respondent Child SOC2000	44.57	13.63
n		8411

Data Source: NCDS [Sweeps 0-4]

The Model

- Multinominal Logistic Regression
 - Employment is Reference Category for DV
- N=8,411
- Predicted Probabilities and Quasi-variance used to graph results
- See supplements on Github: <u>https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step</u> to look at full models

Table 1 – Q-Step Appendix

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

Results

NS-SEC Log odds versus Quasi-variance

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

Results

NS-SEC Log odds versus Quasi-variance

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

Results

NS-SEC Log odds versus Quasi-variance

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Table 1 – Q-Step Appendix

Results

NS-SEC Log odds versus Quasi-variance

Educational Attainment, Sex, and Housing Tenure included in Model

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Substantive Findings

- Structural inequalities matter (prior research confirms this already)
- They matter for different avenues of choice and opportunity (Here is the slightly new stuff)
- Other structural inequalities like housing tenure matter but not as much as social class & sex (New Structuralism isn't evident in NCDS cohort)
- Educational Attainment has the strongest influence on continuing in school (Intuitively obvious)

Sensitivity Analysis of Social Stratification measures

- Does the use of a certain social stratification measure impact the substantive findings of this model?
- To assess this: Sensitivity Analysis
- Three models
 - (1) NS-SEC
 - (2) CAMSIS
 - (3) RGSC

Substantive Findings

- NS-SEC and RGSC models are substantively identical
- CAMSIS model is statistically significant across categories with zero substantive significance

Model	NS-SEC	CAMSIS	RGSC
Number of	8411	8411	8411
observations			
McFadden's R^2	0.25	0.25	0.25
McFadden's Adjusted	0.24	0.24	0.24
Pseudo R^2			
Cox-Snell Pseudo R ²	0.49	0.49	0.49
Nagelkerke Pseudo R ²	0.53	0.52	0.52
AIC	17431.50	17414.46	17454.71
BIC	17741.14	17555.21	17708.05

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Sensitivity analyses of SOC codes

- So far, I have been using a SOC 2000 construction of social stratification measures
- How accurately does a SOC 2000 construction of NS-SEC represent the social landscape of the 1958 cohort?
- Would an earlier SOC construction, say SOC 90 be a more suitable construction to use?

Sensitivity analyses of SOC codes

- Would an earlier SOC construction, say SOC 90 be a more suitable construction to use?
- Back to RQs:
- How have patterns and trends in youth transitions changed over time?
- How have the social processes that underpin youth transitions changed over time?

SOC2000

SOC90

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Non-Traditional Education Over School

SOC2000

Predictions of Entering Non-Traditional Education Over School by Parental NS-SEC Confidence intervals of regression coefficients, by estimation method

SOC90

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Training & Apprenticeships Over School

SOC2000

SOC90

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

THE UNIVERSITY of EDINBURGH COMPARATIVE RESULTS Marginal Effects – NS-SEC Table 3 – Q-Step Appendix

SOC2000

SOC90

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Goodness-of-fit Statistics

Model	SOC2000	SOC90
Number of	8411	8411
observations		
McFadden's R ²	0.25	0.24
McFadden's Adjusted	0.24	0.24
Pseudo R^2		
Cox-Snell Pseudo R ²	0.49	0.49
Nagelkerke Pseudo R ²	0.53	0.52
AIC	17431.50	17499.93
BIC	17741.14	17809.57

Handling Missing Data in the NCDS

N	Percent Complete	Educational	Economic Activity	Housing Tenure	NS-SEC
	(%)	Attainment			
8411	67	\checkmark	\checkmark	\checkmark	\checkmark
2201	17	\checkmark	\checkmark	\checkmark	
1636	13	\checkmark	\checkmark		
251	2	\checkmark	\checkmark		\checkmark
Total = 12536					

How to handle missing data?

• Multiple Imputation versus FIML

Table 1: Simulation Regression Models Using a MCAR Principle

			Missingness					Imputed with		
	Complete		Introduced at			Single Use		no auxiliary		Imputed with
	Records 'God		Independent	All Missingness	All Missingness	Modal		variables and	Imputed with	100
	Model'	Complete SEM	Variable 3	coded as =0	coded as =1	Imputation	FIML	10 imputations	10 imputations	imputations
Independent										
Variable 1	-0.18 ***	-0.18 ***	-0.18 ***	-0.26 ***	-0.26 ***	-0.18 ***	-0.18 ***	-0.17 ***	-0.18 ***	-0.18 ***
	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Independent										
Variable 2	-0.19 ***	-0.19 ***	-0.20 ***	-0.26 ***	-0.26 ***	-0.20 ***	-0.19 ***	-0.19 ***	-0.20 ***	-0.20 ***
	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Independent										
Variable 3	-0.19 ***	-0.19 ***	-0.20 ***	-0.06 ***	-0.06 ***	-0.20 ***	-0.20 ***	-0.20 ***	-0.19 ***	-0.19 ***
	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Intercept	1.15 ***	1.15 ***	1.16 ***	1.29 ***	1.31 ***	1.16 ***	1.15 ***	1.15 ***	1.16 ***	1.16 ***
	(0.02)	(0.02)	(0.03)	(0.02)	(0.01)	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)
Number of										
observations	1000	1000	512	1000	1000	512	1000	1000	1000	1000
AIC	-1245.53	819.95	-649.50	-1125.29	-1125.41	-649.50	825.34			
BIC	-1225.90	844.49	-632.55	-1105.65	-1105.78	-632.55	894.05			
Adjusted R-										
squared	0.80		0.81	0.78	0.78	0.81				
-				*** p<.	001, ** p<.01, * p<.	.05	Ţ	<i>c</i> l · · · · 1	11.	1502

Data Source: Simulation using a MCAR principle. 51 per cent missingness introduced.

Table 2: Simulati	on Regression Mo	dels Using a MA	R Principle							
	Complete Records 'God Model'	Complete SEM	Missingness Introduced at Independent Variable 3	All Missingness coded as =0	All Missingness coded as =1	Single Use Modal Imputation	FIML	Imputed with no auxiliary variables and 10 imputations	Imputed with 10 imputations	Imputed with 100 imputations
Independent										
Variable 1	-0.18 ***	-0.18 ***	-0.11 ***	-0.16 ***	-0.27 ***	-0.27 ***	-0.21 ***	-0.17 ***	-0.17 ***	-0.17 ***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)
Independent										
Variable 2	-0.19 ***	-0.19 ***	-0.12 ***	-0.17 ***	-0.27 ***	-0.27 ***	-0.22 ***	-0.18 ***	-0.19 ***	-0.19 ***
	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)
Independent										
Variable 3	-0.19 ***	-0.19 ***	-0.14 ***	-0.23 ***	0.03	0.03	-0.16 ***	-0.21 ***	-0.20 ***	-0.20 ***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Intercept	1.15 ***	1.15 ***	0.81 ***	1.11 ***	1.29 ***	1.29 ***	1.23 ***	1.12 ***	1.13 ***	1.14 ***
	(0.02)	(0.02)	(0.04)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)
Number of										
observations	1000	1000	513	1000	1000	1000	1000	1000	1000	1000
AIC	-1245.53	819.95	-696.98	-1290.15	-1098.29	-1098.29	792.03			
BIC	-1225.90	844.49	-680.02	-1270.52	-1078.66	-1078.66	860.74			
Adjusted R- squared	0.80		0.31	0.81	0.77	0.77				
				***	p<.001 <u>, ** p</u> <.01, *	p<.05				

Data Source: Simulation using a MAR principle. 51 per cent missingness introduced.

NCDS Handling Missing Data

- With that segway dealt with...
- MI chosen over FIML for the NCDS

Predictors of Non-response (Silverwood et al 2021)

Pred	ictors	of no	n-resp	onse						
	NR sweep 1 (age 7)	NR sweep 2 (age 11)	NR sweep 3 (age 16)	NR sweep 4 (age 23)	NR sweep 5 (age 33)	NR sweep 6 (age 42)	NR BM sweep (age 44)	NR sweep 7 (age 46)	NR sweep 8 (age 50)	NR sweep 9 (age 55)
Sweep 0 (birth)	3	1	1	4	3	3	5	3	3	6
Sweep 1 (age 7)		5	3	3	5	1	5	4	3	4
Sweep 2 (age 11)			1	4	3	3	1	3	2	2
Sweep 3 (age 16)				4	4	3	4	4	4	5
Sweep 4 (age 23)					5	2	1	2	3	2
Sweep 5 (age 33)						5	4	2	3	5
Sweep 6 (age 42)							5	3	5	2
3M sweep (age 44)								3	3	1
Sweep 7 (age 46)									1	1
Sweep 8 (age 50)										3
otal	3	6	5	15	20	17	25	24	27	31
										12

https://github.com/Scott0atley/YouthTransitions/tree/main/Q-Step

Influencing the world since 1583

CENTRE FOR

Substantive Findings

• Substantively identical between CRA and MI models

Concluding Remarks

- How do Structural Inequalities influence choice and opportunities in the transition from school-to-work?
- Different structural inequalities have varying levels of influence on an individual's transition from school-to-work dependent on the type of transitional category that individual enters.
- Sensitivity analysis presents some interesting takeaways for further research
- Handling missing data is important, but the 'good' methods you choose from are not so much

References

- Beck, U., Giddens, A. and Lash, S. (1994) *Reflexive modernization: Politics, tradition and aesthetics in the modern social order*. Stanford University Press.
- Devine, F. (2017) 'The "new structuralism": class politics and class analysis', in *Social Class and Marxism*. Taylor & Francis.
- Elder, G.H. (1994) 'Time, Human Agency, and Social Change: Perspectives on the Life Course', *Social Psychology Quarterly*, 57(1), p. 4. Available at: <u>https://doi.org/10.2307/2786971</u>.
- Gayle, V., Lambert, P. and Murray, S. (2009) 'School-to-Work in the 1990s: Modelling Transitions with Large-Scale Datasets', in R. Brooks (ed.) *Transitions from Education to Work*. London: Palgrave Macmillan UK, pp. 17–41. Available at: <u>https://doi.org/10.1057/9780230235403_2</u>.
- Mayer, K.U. (2004) 'Whose Lives? How History, Societies, and Institutions Define and Shape Life Courses', *Research in Human Development*, 1(3), pp. 161–187. Available at: https://doi.org/10.1207/s15427617rhd0103_3.
- Power, C. and Elliott, J. (2006) 'Cohort profile: 1958 British birth cohort (National Child Development Study)', *International Journal of Epidemiology*, 35(1), pp. 34–41. Available at: <u>https://doi.org/10.1093/ije/dyi183</u>.
- Silverwood, R. et al. (2021) 'Handling missing data in the National Child Development Study: User guide (Version 2).'

Thank You

• Any Questions?