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Confounding, Mediation, and Moderation 

Confounding 

A key strength of multiple regression analysis is that it allows us to examine potential 

confounders (exclusionary) or mediators (inclusionary) of the association we are looking at. 

By always starting with a simple bivariate model (or null model) mediators and 

confounders can then be added to the model. Then if we compare the slopes of each 

subsequent model as well as its R-squared we can begin to assess the utility of the models.  

By controlling for a confounding variable (like neighbourhood poverty when looking at 

foreclosure rate and suicide) we can assess an alternative hypothesis that even when 

controlling for a confounding variable the association between Y and X1 will still persist.  

Suppression (Negative Confounding) 

When our primary association turns out to be larger if we controlled for a cofounding 

factor that is known to be a negative confounding scenario- also known as suppression. In 

this scenario the confounder actually provides support for your theory.  

Mediation 

Mediation or a mediating variable explains the relationship of a dependent variable and 

independent variable.  

Mediation vs Confounding   

Statistically speaking mediation and confounding look exactly the same- the distinction 

instead comes from a theoretical role in your focal association and time ordering. 

Diagrammatically speaking mediation and confounding look very different:  
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Moderating (Interaction) Effects  

Moderating effects are also known as interaction effects. Interaction effects allow us to 

explore whether the association between a variable of interest and our dependent variable 

on a third variable.   

The non-interactional model is expressed as: 

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 

Whereas the interaction model is expressed as: 

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽1(𝑋1 ∗ 𝑋2) 

Regression Models for Categorical Dependent Variables: Logistic 
Regression, Odds Ratios, and Marginal Effects 

Logistic Regression  

Ordinary Least Squares regression assumes that there are linear assumptions, there is no 

heteroscedasticity, there are normally distributed errors, and there is an equal distance 

between response categories. Only continuous dependent variables can meet all of these 

assumptions.  

When wanting to model dependent variables that are not continuous in nature there are a 

number of possibilities: for binary categorical outcomes logistic regression is required, for 

ordinal outcomes ordinal logistic regression, and nominal outcomes with >2 response 

categories multinominal regression is required.  

Within binary outcomes, logic dictates that the probability of experiencing a binary 

outcome is bounded between 0 and 1. Any association therefore is non-linear and limited 

(bounded). The effect of X on Y depends upon your baseline risk of experiencing Y. This 

binary outcome violates OLS assumptions: namely normally distributed errors (Y only 

takes on two values) and homoscedasticity.  

By presenting probabilities as odds it gets rid of the bounding problem. Taking the log 

odds allows us to model the association as non-linear log odds: ln(P/1-P). The logistic 

regression model is expressed as: 

𝐿𝑜𝑔 𝑂𝑑𝑑𝑠(𝑌) = 𝛽1𝑋1 + 𝛽2𝑋2 … + 𝛽𝑘𝑋𝑘 
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The Logistic Curve 

Although log odds are bounded to 0-1, they have an infinite range. Log odds follow an S-

shaped curve. At the extremes, changes in log odds produce very little change in 

probabilities. In the middle, changes in the log odds can produce large changes in 

probabilities. Linear changes in the log odds thus produce non-linear changes in 

probabilities. Another thing to note is that there are floor and ceiling effects- if things are 

very good it is very hard for them to get much better and vice versa. The logistic curve can 

be compared to the Linear Probability (OLS model) below: 

 

Odds Ratio 

The dependent variable is expressed in terms of log(odds) of Y occurring. This changes the 

interpretation of the coefficients: the change in log(odds) of Y occurring is associated with a 

one unit change in the predictor. Most papers thus transform log(odds) into either odds 

ratios or marginal effects. The logit model can be expressed as: 

𝑙 = 𝑙𝑜𝑔𝑏

𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 

We can recover the odds and use the odds ratio by exponentiating the log(odds): 

𝑝

1 − 𝑝
= 𝑏𝛽0+𝛽1𝑋1+𝛽2𝑋2 
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We interpret the odds ratio as the change in the odds. Between 0 and 1 of the association 

with X is negative. 1 if there is no association. Larger than 1 if the association with X is 

positive.  

Marginal Effects 

The effect on the conditional mean of Y associated with a change in the independent 

variable is the marginal effects. Marginal effects are necessary to compare variables within 

and between models. For non-linear models, the effect of a unit change in an independent 

variable depends on the value of all independent variables and of all model parameters. An 

example of marginal effects in a non-linear scenario is seen below: 

 

Marginal Effects in Logit Models  

The average effect of going from one value of Xi to another value of Xi across all 

observations. For example, if the marginal effect of females on smoking is -0.20, then 

females have a 20% point lower probability of smoking than men on average. In Stata 

average marginal effects are estimated using the margins postestimation command.  



7 | P a g e  
 

Regression Models for Categorical Dependent Variables: Ordinal and 
Nominal Outcomes  

Ordinal Logistic Regression  

Ordinal categories are those variables that are ordered on a single dimension with unkown 

distance between categories. Observed y is theoretically obtained from y* by dividing it 

into segments by thresholds 𝜏j, expressed as:  

𝑦𝑖 = 𝑗 𝑖𝑓 τj−1 ≤ y𝑖
∗ < τ𝑗 

Representing these thresholds graphically:  

 

And finally, mathematically:  

 

Ordered Logit Model 

The ordered logit model (OLM) has the slope coefficients of the X regressors the same in 

each category, only their intercepts differ. Traditionally this is why the OLM is also called 

the proportional odds model. The model can be expressed as: 

log
𝑝𝑖

1 − 𝑝𝑖
= 𝑎𝑖 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 
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The proportional odds model is used to estimate the cumulative probability of being at or 

below a particular level of the response variable, or its complimentary, the probability of 

being beyond a particular level.  

The assumptions of the proportional odds model involve: multiple intercept/cut off points, 

the assumption that beta coefficients do not vary across outcome categories (all 

independent variables exert the same effect on each cumulative logit regardless of cut off), 

and finally the Brant test (if we collapsed some of our adjacent categories, would the 

estimated coefficients be approximately equivalent?).  

The cumulative probability model predicts the probability of being in a category j or higher 

and is expressed as: 

Pr(𝑦 ≤ 𝑗) =
exp (𝑥𝑖(𝛽 − τ𝑗)

1 + exp (𝑥𝑖(𝛽 − τ𝑗)
 

Graphically this is represented as:  

 

Continuation Ratio Model 

As already mentioned, the proportional odds model is a form of ordinal logistic regression- 

but it is not the only form. The key properties of a proportional odds model are that there 

are cut points where results can be reversed, and the substantive meaning would not 

change (Palindromic invariance). Alternatively, the continuation ratio model is another 
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form of ordinal logistic regression. With this model, parametrization is slightly different to 

the proportional odds model. Results and substantive meaning are changed when the cut 

points are reversed- meaning no palindromic invariance. If there is a natural baseline that 

all individuals start from then it is advisable to go for this model over the proportional 

odds model.   

The continuation ratio model estimates the odds of being in a particular category j relative 

to being that category or beyond. In this situation, the continuation ratio model can be 

formulated as: 

ln (
𝜋(𝑌 = 𝑗 𝑥1, 𝑥2, … 𝑥𝑝)

𝜋(𝑌 ≥ 𝑗 𝑥1, 𝑥2, … 𝑥𝑝)
= 𝑎𝑗 + (−𝛽1𝑋1 − 𝛽2𝑋2 − ⋯ 𝛽𝑃𝑋𝑃) 

Where 𝑌 = 𝑗 𝑥1, 𝑥2, … 𝑥𝑝 is the conditional probability of being in category j, conditional on 

being that category or beyond, given a set of predictors. j=1,2,…J-1. 𝑎𝑗are the cut points and 

𝛽1, 𝛽2, … 𝛽𝑝are the logit coefficients. The stata command ocratio fits the continuation ratio 

model with the command eform used to estimate the odds ratios and corresponding 

standard errors and confidence intervals.  

Multinominal Logistic Regression  

The multinominal logistic regression requires a reference category to compare the 

probability of each outcome category to the probability of the reference category. 

Probabilities of all outcomes amount to 1. The independence of irrelevant alternatives 

assumption must be satisfied- if A is preferred to B out of a set choice {A, B}, introducing a 

third option X, expanding the choice set to {A, B, X}, must not make B preferable to A.  

Multinominal logit is a set of binary logits that are simultaneously estimated: L vs M using 

nl+nm observations. It is difficult to judge statistical significance using tests from a minimal 

set (which is what mlogit defaults to). The stata command listcoef will list all coefficients.  

The hypothesis that xk has no effect involves a joint test of all J-1 coefficients for a given IV. 

We can use either a Wald or likelihood-ratio test. The stata command mlogtest will calculate 

joint tests for all IVs.  

Plots of Predicted Probabilities  

Plots are especially helpful with multiple outcome categories. Use margins to make 

predictions, marginsplot to graph predictions, and noci will omit the many confidence 
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intervals making it easier to read. The interpretation of marginal effects in multinominal 

logit is all but identical to the interpretation in binary logit.  

Fixed and Random Effects Models 

Fixed Effects Models 

In nonexperimental research, the classical way to control for potentially confounding 

variables is to measure them and put them in some kind of regression model. No 

measurement, no control. The basic idea of fixed effects models is very simple: use each 

individual as their own control. If we average those differences across all persons in the 

population, we get an estimate of the ‘’average treatment effect’’.  

There are two basic data requirements for using fixed effects methods. First, the dependent 

variable must be measured for each individual on at least two occasions. Those 

measurements must be directly comparable, that is, they must give the same meaning and 

metric. Second, the predictor variables of interest must change in value across those 

multiple occasions for some substantial portion of the same.  

The term fixed effects is usually contrasted with random effects model. In a classic view, a 

fixed effects model treats unobserved differences between individuals as a set of fixed 

parameters that can either be directly estimated or patialed out of the estimating equations. 

In a random effects model, unobserved differences are treated as random variables with a 

specified probability distribution.  

In a more modern framework, (Wooldridge, 2002) argues the unobserved differences are 

always regarded as random variables. Then, what distinguishes the two approaches is the 

structure of the associations between the observed variables and the unobserved variables. 

In a random effects model, the unobserved variables are assumed to be uncorrelated with 

all the observed variables. In a fixed effects model, the unobserved variables are allowed to 

have any associations whatever with the observed variables. 

There are some serious disadvantages of fixed effects models. A classical fixed effects 

approach will not produce any estimates of the effects of variables that don’t change over 

time. Second, In many cases, fixed effects estimates may have a substantially larger 

standard errors than random effects estimates, leading to higher p values and wider 

confidence intervals. This is because fixed effects models use only within-individual 
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differences, essentially discarding any information about differences between individuals. 

If predictor variables vary greatly across individuals but have little variation over time for 

each individual, then fixed effects estimates will be very imprecise.  

We sacrifice efficiency to reduce bias.  

Fixed effects models are one way in which we study longitudinal data. Fixed effects are 

regression models for panel data that ‘’differences out’’ between person differences, sweep 

away all stable between-unit (person) differences that are stable over time (wi). Fixed 

effects restrict analysis to within-unit change. It models within-unit change in the 

dependent variable as a function of time-varying independent variables. Fixed effects 

models are formulated as: 

𝑦𝑖𝑡 = 𝜇𝑡 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖𝑡 

The 𝜇𝑡 is an intercept term that can be difference for each time-period. 𝜇𝑡 does not vary 

across cases, it only varies across time. x stands for the independent variables whose values 

can vary across time (income, marital status etc). z stands for the independent variables 

whose values do not change across time (race, gender etc). We can say that these variables 

have time-invariant values or measure stable characteristics. 𝛽 and 𝛾 are the coefficients for 

the xs and zs. The model assumes that these effects are time-invariant (the effect of x1 is the 

same at time 1 as it is at time 4). Interactions with time can be added is the effects of the xs 

or zs are thought to vary with time (race may be thought to have less effect at time 1 than 

time 4). 𝑎𝑖 and 𝜀𝑖𝑡 are both error terms. The latter is different for each individual at each 

point in time. the former only varies across individuals but not across time- we can think of 

it as representing the effects of all the time invariant variables that have not been included 

in the model.  

The two error terms 𝑎𝑖 and 𝜀𝑖𝑡 behave somewhat different from each other. There is a 

different 𝜀𝑖𝑡 for each individual at each point in time, 𝑎𝑖 only varies across individuals, not 

over time. We regard 𝑎𝑖 as representing the combined effect on y of all unobserved 

variables that are constant over time. On the other hand, 𝜀𝑖𝑡 represents purely random 

variation at each point in time.  

At this point I’ll make some rather strong assumptions about 𝜀𝑖𝑡, namely, that each 𝜀𝑖𝑡 has a 

mean of zero, has a constant variance (for all I and t), and is statistically independent of 

everything else (except for y). The assumption of zero mean is not critical as it is only 

relevant for estimating the intercept. The constant variance assumption can sometimes be 
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relaxed to allow for different variances for different t. Note that the 𝜀𝑖𝑡 at any one period is 

independent of 𝑥𝑖𝑡 at any other period, which means that 𝑥𝑖𝑡 is strictly exogenous.  

As for 𝑎𝑖, the traditional approach in fixed effects analysis is to assume that this term 

represents a set of n fixed parameters that can either be directly estimated or removed in 

some way from the estimating equations.  

Although we’ll assume statistical independence of 𝑎𝑖 from 𝜀𝑖𝑡, we allow for any correlations 

between 𝑎𝑖 and 𝑥𝑖𝑡, the vector of time-varying predictors. If we are not interested in 𝛾, we 

can also allow for any correlations between 𝑎𝑖 and 𝑧𝑖.  

The inclusion of such correlations distinguishes the fixed effects approach from a random 

effects approach and allows us to say that the fixed effects method ‘’controls’’ for time-

invariant unobservables. 

The Two-Period Case 

Estimation is particularly easy when the variables are observed at only two periods (T=2). 

The two equations are then: 

𝑦𝑖1 = 𝜇1 + 𝛽𝑥𝑖1 + 𝛾𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖1 

𝑦𝑖2 = 𝜇2 + 𝛽𝑥𝑖2 + 𝛾𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖2 

By subtracting the first equation from the second, we get the ‘first difference’ equation: 

𝑦𝑖2 − 𝑦𝑖1 = (𝜇2 − 𝜇1) + 𝛽(𝑥𝑖2 − 𝑥𝑖1) + (𝜀𝑖2 − 𝜀𝑖1) 

Which can be rewritten as: 

Δ𝑦𝑖 = Δ𝜇 + 𝛽Δ𝑥𝑖 + Δ𝜀𝑖 

Where Δ indicates a difference score. Note that both 𝑎𝑖 𝑎𝑛𝑑 𝛾𝑧𝑖 have been ‘’differenced out’’ 

of the equation. Hence, we no longer have to be concerned about 𝑎𝑖 and its possible 

correlation with Δ𝑥𝑖. On the other hand, we also lose the possibility of estimating 𝛾. Since 

𝑥𝑖2 𝑎𝑛𝑑 𝑥𝑖1 are each independent of 𝜀𝑖2 𝑎𝑛𝑑 𝜀𝑖1, it follows that Δ𝑥𝑖 is independent of Δ𝜀𝑖. This 

implies that one can get unbiased estimates of 𝛽 by doing ordinary least squares (OLS_ 

regression on the difference scores.  

Whenever conventional regression produces a significant coefficient but fixed effects 

regression does not, there are two possible explanations: (a) the fixed effects coefficient is 
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substantially smaller in magnitude and/or (b) the fixed effects standard error is 

substantially larger. Standard errors for fixed effects models are often larger than those for 

other methods, especially when the predictor variable has little variation over time. 

Whenever p values differ from other methods always check the standard errors and 

coefficients.  

Extending the Difference Score for the Two-Period Case 

The basic effects model can be extended to allow for the effects of x and z to vary over time. 

In the two-period case, we can write the equations with distinct coefficients at each period: 

𝑦𝑖1 = 𝜇1 + 𝛽1𝑥𝑖1 + 𝛾1𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖1 

𝑦𝑖2 = 𝜇2 + 𝛽2𝑥𝑖2 + 𝛾𝑖𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖2 

Taking first differences and rearranging terms produces: 

𝑦𝑖2 − 𝑦𝑖1 = (𝜇2 − 𝜇1) + 𝛽2(𝑥𝑖2 − 𝑥𝑖1) + (𝛽2 − 𝛽1)𝑥𝑖1 + (𝛾2 − 𝛾1)𝑧𝑖 + (𝜀𝑖2 − 𝜀𝑖1) 

Which could also be written as: 

Δ𝑦𝑖 = Δ𝜇 + 𝛽2Δ𝑥𝑖 + Δ𝛽𝑥𝑖 + Δγ𝑧𝑖 + Δ𝜀𝑖 

There are three things about this equation. First, as before, 𝑎𝑖 has dropped out, so we don’t 

have to be concerned about its potential confounding effects. Second, z has not dropped 

out, and its coefficient vector is the difference in the coefficient vectors for the two time 

points. From this we learn that time-invariant variables whose coefficients vary over time 

must be explicitly included in the regression equation. Fixed effects only controls for time-

invariant variables with time-invariant effects. Third, the equation now includes 𝑥1 as a 

predictor, and its coefficient vectyor is the difference in the coefficient vectors for the two 

time periods. Thus, for z and 𝑥1, tests for whether their coefficients are 0 are equivalent to 

testing whether 𝛽1 = 𝛽2 or 𝛾1 = 𝛾2.  

A First-Difference Method for Three of More Periods per Individual  

When each individual is observed at three or more points in time (T>2), it’s not so obvious 

how to extend the methods we just considered. One possible approach is to construct and 

estimate two first-difference equations.  

𝑦𝑖2 − 𝑦𝑖1 = (𝜇2 − 𝜇1) + 𝛽(𝑥𝑖2 − 𝑥𝑖1) + (𝜀𝑖2 − 𝜀𝑖1) 

𝑦𝑖3 − 𝑦𝑖2 = (𝜇3 − 𝜇2) + 𝛽(𝑥𝑖3 − 𝑥𝑖2) + (𝜀𝑖3 − 𝜀𝑖2) 
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These equations can be estimated separated by OLS, and each will give unbiased estimates 

of 𝛽.Under the assumption that 𝛽 does not vary over time, the two equations should be 

estimated simultaneously for optimal efficiency. This can be accomplished by creating a 

single data set with two records for each person, one with the difference scores for the first 

equation and the other with the difference scores for the second equation. There should also 

be a dummy variable distinguishing the first record from the second record. Also there 

should be a variable with a common ID number for the two records from each person.  

The intercept can be interpreted as an estimate of 𝜇2 − 𝜇1 while the coefficient for the 

equation dummy is an estimate of (𝜇3 − 𝜇2) − (𝜇2 − 𝜇1). Although the combined OLS 

estimates should be unbiased, they ignore the fact that 𝜀2 − 𝜀1is likely to be negatively 

correlated with 𝜀3 − 𝜀2 because they share a common component, 𝜀2, with opposite signs. 

This implies that the coefficient estimates may not be fully efficient and the standard error 

estimates may be biased. We can solve this problem by estimating the correlation between 

the error terms and then using generalised least squares (GLS) to take account of that 

correlation.  

Such GLS programs typically require the specification of an ID variable so that observations 

from the same individual can be identified. You can use the xtreg command in Stata with 

the pa option, which estimates the linear model using GLS.  

The first-difference method can be easily extended to more than three periods per 

individual. For T periods per individual, T-1 records are created, each with difference 

scores between adjacent time points for all variables. Additionally, there should be a 

variable containing a common ID number for all observations from the same individual 

and a variable or a set of dummy variables to distinguish the different records. The 

regression is then estimated on the entire set of records, using GLS to adjust for correlations 

among the error terms. Unless T is large, for example, greater than 10, it’s probably best to 

allow the error correlation matrix to be unstructured. That is, the matrix would allow for a 

different correlation between each pair of error terms. With larger T, it may be preferable to 

impose a simplified structure to reduce the number of distinct correlations that need to be 

estimated.  
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Dummy Variable Method for Two or More Periods per Individual  

Although the multiple-difference-score method is a reasonable way to estimate a fixed 

effects model for the multi-period case, the name ‘’fixed effects’’ is usually reserved for a 

different method, one that can be implemented either by dummy variables or by 

constructing mean deviations. The results while not identical are usually very similar to the 

difference-score method. In the two-period case, the two methods give identical results.  

The dummy variable method requires a data set with a rather different structure: one 

record for each period for each individual. The time-varying variables have the same 

variable names on each record but different values. For any time-invariant variables, their 

values are simply replicated across the multiple records for each individual. There should 

also be an ID variable with a common value for all the records for each individual. Last, 

there should be a variable distinguishing the different periods for each individual.  

To implement the method, it’s necessary to construct a set of dummy variables to 

distinguish the individuals in the data set. Many statistical packages can do this 

automatically by specifying the UD variable as a categorical variable. If the TIME variable is 

also specified as a categorical variable, two dummy variables will be created to distinguish 

the here different years. One can then use OLS to estimate the coefficients. The coefficients 

for the dummy variables created from the ID variable are actually the estimates of the 𝑎𝑖, 

under the contrast that one of them is equal to 0.  

The best situation for a fixed effects analysis is when all the variation on a time-varying 

predictor is within person, but there’s still a lot of between-person variation on the 

response variable.  

The problem with the dummy variable method is that the computational requirement of 

estimating coefficients for all dummy variables can be quite burdensome, especially in large 

samples where it may be beyond the capacity of the software or the machine memory. 

Fortunately, there is an alternative algorithm- the mean deviation method- that produces 

exactly the same results. The one drawback is that it doesn’t five estimates for the 

coefficients of the dummy variables representing different persons, but those are rarely of 

interest anyway.  

The mean deviation algorithm works like this. For each persons and for each time-varying 

variable (both response and predictor variables), we compute the means over time for that 

person: 
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𝑦𝑖̅ =
1

𝑛𝑖
∑ 𝑦𝑖𝑡

𝑡

 

𝑥𝑖̅ =
1

𝑛𝑖
∑ 𝑥𝑖𝑡

𝑡

 

Where 𝑛𝑖 is the number of measurements for person i. Then we subtract the person-specific 

means from the observed values of each variable.  

𝑦𝑖𝑡
∗ = 𝑦𝑖𝑡 − 𝑦𝑖̅ 

𝑥𝑖𝑡
∗ = 𝑥𝑖𝑡 − 𝑥𝑖̅ 

Finally, we regress y* on x*, plus variables to represent the effect of time. This is sometimes 

called a ‘conditional method’ because it conditions out the coefficients for the fixed effects 

dummy variables.  

If you construct the deviation scores yourself and then use OLS, you will get the correct 

OLS estimates for all the coefficients but not the standard errors and p values. That’s 

because the calculation of the degrees of freedom is based on the number of variables in the 

specified model, when it should actually include the number of dummy variables implicitly 

used to represents different persons in the sample. The xtreg command in Stata does the 

correct calculations for a fixed effects model. 

The xtreg command also reports several additional statistics that are specific to a fixed 

effects model: 

An F test of the null hypothesis that all the coefficients for the fixed effects dummy 

variables are zero. This is equivalent to saying that there is evidence for person-level 

unobserved heterogeneity. That is, there are stable differences in antisocial behaviour 

between persons that are not fully accounted for by the measured predictor variables.  

An estimate of the proportion of variance in the dependent variable that is attributable to 

the fixed effects (the 𝑎𝑖𝑠), labelled ‘’rho (fraction of variance due to u_i).’’ 

An estimate of the correlation between the fixed effects 𝑎𝑖 and 𝛽̂𝑥𝑖𝑡, the estimated linear 

combination of the time-varying predictors. In a random effects model, this correlation is 

assumed to be 0. 
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Three 𝑅2s: within, between, and overall. The within 𝑅2 is just the usual 𝑅2 calculated for the 

regression using the mean deviation variables. The between 𝑅2 is the squared correlation 

between the person-specific mean of y and the predicted person-specific mean of y. Finally, 

the overall 𝑅2is the squared correlation between y itself and the predicted value of y. All 

three of these 𝑅2s are calculated using predicted values based on the estimated regression 

coefficients but not using the coefficients for the fixed effects dummy variables.  

Interactions with Time in the Fixed Effects Method 

For each of the interactions with time, the t statistic tests whether a coefficient at Time 2 or 

Time 3 is different from the coefficient at Time 1.  

Comparison with Random Effects Models 

A popular alternative to the linear fixed effects model is the random effects or mixed 

model. This model is based on the same equation that we used for the fixed effects model: 

𝑦𝑖𝑡 = 𝜇𝑖 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖𝑡 

The crucial difference is that now, instead of treating 𝑎𝑖 as a set of fixed numbers, we 

assume that 𝑎𝑖 is a set of random variables with a specified probability distribution. For 

example, it is typical to assume that each 𝑎𝑖 is normally distributed with a mean of 0, 

constant variance, and is independent of all the other variables on the right hand side of the 

equation.  

Contrary to popular belief estimating a random effects model does not really ‘’control’’ for 

unobserved heterogeneity. That’s because the conventional random effects model assumes 

no correlation between the unobserved variables and the observed variables. The fixed 

effects model, on the other hand, allows for any correlations between time-invariant 

predictors and the time-varying predictors. It does so, however, at the cost of some 

efficiency in the event that those correlations are really zero.  

The simpler model (random effects) will lead to more efficient estimates, but those 

estimates may be biased if the restrictions of the model are wrong. The more complex 

model (fixed effects) is less prone to bias but at the expense of greater sampling variability.  

The Hausman test compares the random effects and fixed effects models- this helps 

determine whether the biases inherent in the random effects method are small enough to 

ignore, or whether we need to move to the less restrictive fixed effects mode. The Hausman 
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test of the null hypothesis that the random effects coefficients are identical to the fixed 

effects coefficients. 

 

The fixed effects model has the benefits of: being better able to deal with unobserved 

heterogeneity, allows us to study change, is a relatively straightforward extension of the 

OLS model, and allows for multiple levels of fixed effects to be modelled. Some of the costs 

of fixed effects are it limiting our focus to time varying independent variables, as well as 

limiting our analysis to units that experience change on time-varying variables- this limits 

statistical power and raises external validity issues, unobserved heterogeneity is still an 

issue (confounders that are time-varying remain a problem).  

If your goal is to study change, then fixed effects models are for you. Also, if you care a 

great deal about unobserved heterogeneity then fixed effects models are your best bet. 

Since fixed effects models discard a lot of information standard errors tend to be large. 

These large standard errors can sometimes be tolerated through a tradeoff- other models 

like random effects models will suffer from omitted variable bias which fixed effects 

models can control for.  

A Hybrid Method 

In the hybrid method, we combine elements of a fixed effects and random effects model. 

The time-varying x variables are again transformed into deviations from their person-

specific means, but the response variable y is not. Furthermore, unlike previous fixed 

methods fixed effects methods, we now include a time-invariant z variables in the 

regression model. In addition, we also include variables that are the person-specific means 

for each of the time-varying variables. Finally, instead of doing OLS regression, we estimate 

a random effects model to ensure that the standard errors reflect the dependence among 

the multiple observations for each person.  

In the multilevel model literature (Bryk and Raundenbush 1992; Goldstein 1987; Kreft and 

DeLeeuw 1995) the practice of subtracting person-specific means from each time varying 

variable is called group mean centering. Although group mean centering can produce 

substantially different results, the literature has not made the connection to fixed effects 

models, nor has it been recognized that group mean centering controls for all time-

invariant predictors.  
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Another attraction of the hybrid approach is that it can be extended in interesting ways that 

are not easily handled with the conventional methods for fixed effects estimation. The 

random effects models that we have been considering so far are all random intercept 

models though it is also possible to estimate random slope models.  

Using the hybrid model, it’s also possible to estimate models with more complex error 

structures than the rather simple structure implied by the conventional fixed effects model 

(See Singer and Willett 2003).  

Fixed Effects logistic Models  

The notation for logistic regression fixed effects models is as follows: 

log (
𝑝𝑖𝑡

1−𝑝𝑖𝑡
) = 𝜇𝑡 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖, t=1,1,…,T 

Where 𝑝𝑖𝑡 is the probability that the response variable is equal to 1. As before, 𝑥𝑖𝑡 is a vector 

of time-varying predictors, 𝑧𝑖 is a vector of time-invariant predictors, and 𝑎𝑖 represents the 

combined effects of all unobserved variables that are constant over time. We shall treat 𝑎𝑖 as 

a set of fixed constants, one for each individual. This is equivalent to assuming that 𝑎𝑖 is 

random with unrestricted associations between 𝑎𝑖 and 𝑥𝑖𝑡. 

The Two-Period Case 

An analgous procedure is available for logistic regression (comparable to that of fixed 

effects linear models for the two-period case). We apply a conventional maximum 

likelihood to estimate the model: 

log (
𝑝𝑖

1 − 𝑝𝑖
) = (𝜇2 − 𝜇1) + 𝛽(𝑥𝑖2 − 𝑥𝑖1) 

This is actually a form of conditional maximum likelihood estimation. As in the linear case, 

both 𝑧𝑖 and 𝑎𝑖 drop out of the equation.  

Three or More Periods 

Both conditional and unconditional maximum likelihood (using dummy variables and 

multiple records using a deviation from its person-specific mean respectively) are available 

for logistic regression of dichotomous outcomes, but in this case, they do not produce the 

same results. As in the linear case, unconditional maximum likelihood is implemented by 

creating multiple records per person and estimating a conventional logistic regression 
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model with dummy variables for persons. Unfortunately, this method produces biased 

estimates of the coefficients (Hsiao 1986). In fact, in the two-period case, the coefficient 

estimates are exactly twice as large as they should be (Abrevaya 1997). The reason for this 

bias is something called the incidental parameters problem (Kalbfleisch and Sprott 1970; 

Lancaster 2000). What happens is the number of parameters increases directly with the 

sample size, thus violating one of the conditions that underlie the asymptotic theory of 

maximum likelihood estimation.  

The solution is to do conditional maximum likelihood, which conditions the 𝑎𝑖 parameters 

out of the likelihood function (Chamberlain 1980). This is accomplished by conditioning the 

likelihood function on the total number of events observed for each person. In effect, each 

person’s contribution to the likelihood function is the answer to a question: ‘Given that a 

girl was in poverty 2 out of the 5 years, what is the probability that this happened in, say, 

Years 2 and 4 rather than in one of the nine other possible pairs of years?’. This 

conditioning approach only works for the logistic regression model for dichotomous 

response variables, not for other ‘’link’’ functions such as probit or complementary log-log.  

Within Stata, the routines to maximize the conditional likelihood for logistic regression can 

be accomplished using either the xtlogit  or clogit command.  

The Stata command xtlogit fits logistic regression models to panel data using three quite 

different methods: fixed effects (conditional likelihood), random effects, and generalized 

estimating equations.  

Both GEE and random effects estimates do nothing to control for unmeasured predictors. In 

contrast, fixed effects estimation (conditional likelihood) controls for all constant predictors. 

It also produces appropriate estimates of standard errors that are corrected for dependence. 

On the downside, (looking at data from page 36 of Allison 2009) those standard errors are 

larger than the random effects or GEE standard errors because a substantial amount of 

information in the data is not used. In applications where the withing-person variation is 

small relative to the between-person variation, the standard errors of the fixed effects 

coefficients may be too large to tolerate. 

Another point worth noting is that both conditional likelihood and random effects 

estimates are ‘’subject specific’’ while the GEE estimates are ‘’population averaged’’. A 

subject-specific coefficient tells us what would happen to a single individual if that person’s 

predictor variable were increased by one unit. In contrast, a population-averaged 
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coefficient tells us what would happen to the whole population if everyone’s predictor 

variable were increased by one unit. If the model is linear, there is no distinction between 

the two kinds of coefficients. For logistic regression models, however, subject-specific 

coefficients are typically larger than population-averaged coefficients.  

Interactions With Time 

Another downside of the conditional likelihood method is that coefficients can’t be 

estimated for variables that don’t vary over time (though these variables are implicitly 

controlled). Interactions between time-varying and time-constant variables can be included 

in the model.  

The interpretation of these interactions is somewhat different for the time-varying and 

time-constant predictors. For the time-varying predictors, it’s usually best to consider how 

the effect of each predictor arise with time. For time-constant predictors, the best way to 

interpret the interactions is to examine how the effect of time varies with these variables.  

A Hybrid Method 

As in the linear case, the attraction is that we can (a) include time-constant variables in the 

mode, (b) perform test for comparing fixed effects and random effects, and (c) fit a wider 

class of models. Unlike the conditional likelihood, the hybrid approach can be used with 

other link functions such as probit or complimentary log-log.  

The coefficients for the mean variables are not very interesting in themselves. A 

conventional random effects model implicitly assumes that the deviation coefficients are 

identical to the mean coefficients. We can easily test that assumption within the hybrid 

model by directly testing for equality across the pairs of coefficients.  

Another advantage of the hybrid approach is the ability to get estimates for the time-

constant predictors.  

In Stata, logit models with random coefficients require a different command, xtmelogit.  

Methods for More Than Two Categories on the Response Variable 

Consider a categorical response variable 𝑦𝑖𝑡 that can take on more than two values. Suppose 

that those values are the integers ranging from 1 to J, with the running index j. Let 𝑝𝑖𝑡𝑗 =

𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑗). We then need a model of how this probability depends on our predictor 

variables 𝑥𝑖𝑡 and 𝑧𝑖. 



22 | P a g e  
 

In the case in which the categories of the dependent variable are ordered a fixed effects 

version of the model can be written as: 

log (
𝐹𝑖𝑗𝑡

1−𝐹𝑖𝑗𝑡
) = 𝜇𝑡𝑗 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖, j=1,…,J-1 

Where 𝐹𝑖𝑗𝑡 = ∑ 𝑝𝑖𝑚𝑡
𝐽
𝑚=𝑗  is the cumulative probability of being in category j or higher. This 

equation can be viewed as as et of simultaneous binary logistic regression equations, each 

equation comparing one category with the last category.  

The more complicated situation in which the categories of the dependent variable are not 

ordered calls for the use of a multinomial logit model, also known as the generalized logit 

model. The firxed effecs version of that model is: 

log (
𝑝𝑖𝑗

𝑝𝑖𝐽
) = 𝜇𝑡𝑗 + 𝛽𝑗𝑥𝑖𝑡 + 𝛾𝑗𝑧𝑖 + 𝑎𝑖𝑗, j=1,…,J-1 

The fixed effects 𝑎𝑖𝑗, vary both over individuals and over possible response values, but not 

over time.  

The fixed effects multinomial logit model is like the binary logit model in that it has 

reduced sufficient statistics for the 𝑎𝑖𝑗’s, namely, the frequency counts of the different 

response values for each individual. In principle, the model can be estimated by conditional 

maximum likelihood with conditioning on those counts (Chamberlain 1980). However, 

there is no software available to do this. If the time-varying predictors are categorical, the 

model can be reformulated as a log-linear model and estimated in that framework 

(Conaway 1989).  

Another approach to estimation is to decompose the multinomial model into a set of binary 

models, one model for each comparison of a particular category with a reference category 

(Allison 1999a). Each binary model can then be estimated using the conditional logistic 

regression methods. This approach produces approximately unbiased estimates of the 

coefficients though results will differ depending on the choice of the reference category.  

Estimating the multinomial logit model in Stata, you can use the mlogit command with 

robust standard errors to correct for dependence in the repeated observations for each 

person.  
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Fixed Effects Models For Count Data 

Many researchers treat count variables as continuous variables and do their analysis with 

ordinary least squares regression. Count variables are necessarily discrete and cannot have 

values less than zero. Usually, their distributions are highly skewed.  

Poisson Models for Count Data With Two Periods per Individual 

A fixed effects Poisson regression model can be estimated with an ordinary logistic 

regression program for grouped data. To illustrate this (example used in pp. 50 of Allison 

2009) Let 𝑦𝑖1 be be the patent count for firm i, in 1975 and 𝑦𝑖2 the patent count in 1979. Each 

of these variables is assumed to have a Poisson distribution with an expected value of 𝜆𝑖𝑡. 

That is, the probability that 𝑦𝑖𝑡 = 𝑟 is given by: 

Pr(𝑦𝑖𝑡 = 𝑟)
𝜆𝑖𝑡

𝑟 𝑒−𝜆𝑖𝑡

𝑟!
, r=0,1,2,… 

The Poisson distribution is perhaps the simplest probability distribution that is appropriate 

for count data. It may be derived form a stochastic process model under the assumptions 

that (a) events cannot occur simultaneously and (b) events are independent (Cameron and 

Trivedi 1998). The independence assumption means that the occurrence of an event neither 

raises nor lowers the probability of future events.  

An unusual property of the Poisson distribution is that its mean and variance are equal: 

𝐸(𝑦𝑖𝑡) = 𝑣𝑎𝑟(𝑦𝑖𝑡) = 𝜆𝑖𝑡 

This does of course lead to issues of overdispersion that can seriously compromise the 

estimation of Poisson regression models.  

Next, we let 𝜆𝑖𝑡 be a log-linear function of the predictor variables: 

𝑙𝑜𝑔𝜆𝑖𝑡 = 𝜇𝑡 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖 

The objective is to estimate the parameters in the above equation. TO do this, we can use 

conditional maximum likelihood, the same method used to estimate the fixed effects 

logistic regression model. Consider the distribution of 𝑦𝑖2 conditional on the total event 

count for the two time periods combined, denoted by 𝑤𝑖 = 𝑦𝑖1 + 𝑦𝑖2. It can be shown that 

𝑦𝑖2l𝑤𝑖~𝐵(𝑝𝑖, 𝑤𝑖). That is, conditional on the total count 𝑤𝑖, the 1970 count 𝑦𝑖2 has a binomial 

distribution with parameters 𝑝𝑖 𝑎𝑛𝑑 𝑤𝑖 where: 
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𝑝𝑖 =
𝜆𝑖2

𝜆𝑖2 + 𝜆𝑖1
 

It follows, that: 

log (
𝑝𝑖

1 − 𝑝𝑖
) = (𝜇2 − 𝜇1) + 𝛽(𝑥𝑖2 − 𝑥𝑖1) 

Thus, we have been able to convert our Poisson regression model into a logistic regression 

model in which the predictor variables are difference scores for the original predictors.  

To implement this conditional method using Stata, I can use the blogit command, which 

does ML estimation of grouped binomial data. The blogit command expects the dependent 

variable to come in two parts: the number of ‘’events’’ and the number of ‘’trials’’.  

Poisson Models for Data With More Than Two Periods per Individual 

There are two approaches to estimation of a fixed effects Poisson model when individuals 

are observed at more than two periods. The first is a conditional ML and the second an 

unconditional ML. In conditional ML the likelihood function is conditioned on the sum of 

all counts for each individual, which eliminates the fixed effects (𝑎𝑖). The resulting 

conditional likelihood (Cameron and Trivedi 1998) is proportional to: 

∏ ∏(
exp (𝜇𝑡 + 𝛽𝑥𝑖𝑡)

∑ 𝑒𝑥𝑝𝑠 (𝜇𝑠 + 𝛽𝑥𝑖𝑠)
𝑡

)𝑦𝑖𝑡

𝑖

 

In Stata, this likelihood can be maximized with the xtpoisson command. This command 

requires that the data be restructured so that there is one record for each year, with a 

common ID variable linking together the records for each year.  

The default in Stata is to assume that 𝑎𝑖 has a log-gamma distribution, but it’s possible to 

specific a normal distribution. The population-averaged model, on the other hand, does not 

postulate an additional disturbance term in the Poisson regression equation, but merely 

allows the multiple observations for each to be correlational. This model is estimated by the 

GEE method, which, as in the logistic case, is a kind of iterated generalized least squares. 

Both random effects and GEE are vulnerable to overdispersion, so the conventional 

standard errors are biased.  

The fixed effects Poisson regression model can also be estimated by unconditional ML. This 

is accomplished by estimating a conventional Poisson regression model that includes 
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dummy variables. For the Poisson regression model unlike the logistic regression model, 

conditional and unconditional estimation always produce identical results. Consequently, 

the choice between one or the other is purely a matter of computational convenience.  

Fixed Effects Negative Binomial Models for Count Data 

Fixed effects Poisson regression models are quite vulnerable to the effects of 

overdispersion. That’s somewhat unexpected because fixed effects already allow for 

unobserved heterogeneity across individuals by way of the 𝑎𝑖 parameters. That 

heterogeneity is presumed to be time invariant, however, and there may still be unobserved 

heterogeneity that is specific to particular points in time, leading to observed 

overdispersion. The standard errors can be corrected for overdispersion by using the 

bootstrap or jackknife methods. A better method is by directly building overdispersion into 

the model for event counts.  

To model the overdispersion we now assume that counts are drawn from a negative 

binomial distribution for each count at each point in time The negative binomial 

distribution is a generalization of the Poisson distribution that allows for overdispersion by 

way of an additional parameter. The appeal of the negative binomial model is that the 

estimated regression coefficients may be more efficient, and the standard errors and test 

statistics may be more accurate than those produced by such empirical, after-the-fact 

corrections.  

The traditional NB2 model is given by:  

Pr(𝑦𝑖𝑡 = 𝑟) =
Γ(𝜃 + 𝑟)

Γ(𝜃)Γ(𝑟 + 1)
(

𝜆𝑖𝑡

𝜆𝑖𝑡 + 𝜃
)𝑟(

𝜃

𝜆𝑖𝑡 + 𝜃
)𝜃 

In this equation 𝜆𝑖𝑡 is the expected value of 𝑦𝑖𝑡, 𝜃 is the overdispersion parameter, and Γ(. ) 

is the gamma function. As 𝜃 → ∞, this distribution converges to the Poisson distribution. 

As with the Poisson midel, we assume that the expected value of 𝑦𝑖𝑡 is described by the log-

linear regression: 

𝑙𝑜𝑔𝜆𝑖𝑡 = 𝜇𝑡 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖 

Where 𝑎𝑖 are treated as fixed effects. Unlike the Poisson model conditional likelihood is not 

an option. In technical terminology, the total count for everyone is not a ‘’complete 

sufficient statistic’’ for 𝑎𝑖, so conditional on the total does not remove 𝑎𝑖 from the likelihood 

function.  Whilst Hausman, Hall, and Griliches (1984) proposed a rather different fixed 
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effects negative binomial regression model derived from a conditional ML estimator and 

their method has been incorporated in to the Stata command xtnbreg Allison and Waterman 

(2002) have shown this is not a true fixed effects regression model and the method does not 

control for all stable predictors.  

An unconditional ML by estimating negative binomial regression models that include 

dummy variables for all individuals (except one) is the preferred option. In Stata, this can 

be done with the nbreg command. Computation is quite slow because of the many 

coefficients that must be estimated.  

Using Monte Carlo simulations, Allison and Waterman (2002) found that the unconditional 

negative binomial estimator did not show any substantial bias from incidental parameters. 

They also showed that negative binomial estimators had substantially smaller true 

standard errors that Poisson estimators. Unconditional negative binomial estimation did 

have one flaw however: confidence intervals tended to be too small. Under many 

conditions, the nominal 95% confidence intervals covered the true value only about 85% of 

the time. This problem can be easily corrected by adjusting the standard errors for 

overdispersion using a formula based on the deviance statistic. Although Stata does not 

report the deviance statistic required for this correction, the standard errors produced by 

the vce(opg) option in Stata are about the same as those produced by the deviance 

correction.  

A Hybrid Approach  

A hybrid approach is also available to Poisson regression methods. Here, it is best to use 

negative binomial regression models because they are less prone to overdispersion. To get 

correct standard errors, it’s important to use an estimation method that allows for 

dependence among the multiple observations for everyone. Either a random effects model 

or a population-averaged (GEE) model can accomplish that.  

These can be estimated using Stata’s xtnbreg command.  

As usual, one of the attractions fo the hybrid method is the ability to include time-invariant 

predictors. The other attraction is the ability to test the fixed effects model against the more 

restricted random effects model  
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Fixed Effects Models For Events History Data 

Event history analysis is the name given to a set of statistical methods that are designed to 

describe, explain, or predict the occurrence of events. These methods are also called 

survival analysis. These methods are appropriate for a vast array of social phenomena such 

as births, marriages, divorces, job terminations, promotions, arrests, migrations, and 

revolutions.  

In general, an event may be defined as a qualitative change that occurs at some point in 

time. To apply event history methods, you need event history data, which is simply a 

longitudinal record of when events occurred to some individual or sample of individuals. If 

you want to do a causal or predictive analysis, you will also want to measure possible 

explanatory variables.  

Cox Regression 

The most popular method for analyzing event history data is Cox regression. Rather than 

directly modeling the length of the interval, the dependent variable in Cox regression is the 

hazard of instantaneous likelihood of event occurrence. For repeated events, the hazard 

may be defined as follows. Let 𝑁𝑖(𝑡) be the number of events that have occurred to 

individual i, by time t. The hazard for individual I, at time t is given by: 

ℎ𝑖(𝑡) = lim
Δ𝑡→0

Pr [𝑁𝑖(𝑡 + Δ𝑡) − 𝑁𝑖(𝑡) = 1]

Δ𝑡
 

In words, this equation says that we should consider the probability of one additional event 

in some small interval of time Δ𝑡. Then form the ratio of this probability to Δ𝑡, and take the 

limit of this ratio as Δ𝑡 goes to 0. For repeated events, the hazard function is also known as 

the intensity function.  

Next, we model the hazard as a function of the predictor variables. Letting ℎ𝑖𝑘(𝑡) be the 

hazard for the kth event for individual i, a proportional hazards model is given by: 

log ℎ𝑖𝑘(𝑡) = 𝜇(𝑡 − 𝑡𝑖(𝑘−1)) + 𝛽𝑥𝑖𝑘 

Where 𝑥𝑖𝑘 is a column vector of predictor variables that may vary across individuals and 

across events, 𝛽 is a row vector of coefficients, 𝑡𝑖(𝑘−1) is the time of the (k-1)th event, and 

𝜇(. ) is an unspecified function of the length of time since the most recent event. In this 

model, we assume that 𝜇(. ) is the same function for all individuals in the sample.  
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A remarkable thing about partial likelihood is that it can estimate 𝛽 without making any 

assumptions about the function 𝜇. In Stata, Cox regression is implemented with the stcox 

command.  

Cox Regression With Fixed Effects 

The first version of our fixed effects regression model is: 

𝑙𝑜𝑔ℎ𝑖𝑘(𝑡) = 𝜇(𝑡 − 𝑡𝑖(𝑘−1)) + 𝛽𝑥𝑖𝑘 + 𝑎𝑖 

The possibility to use dummy variables raises the issue of bias- (Allison 2002) has shown 

that the Cox regression is more like the logistic regression in this respect. When the average 

number of intervals per person is less than three, using dummy variables to implement 

fixed effects produces regression coefficients that are biase (away from zero) by 

approximately 30% to 90%, depending on the level of censoring (a higher proportion of 

censored cases produces greater inflation).  

There is an alternative method that is easily implemented and very effective. By modifying 

the previous equation to: 

𝜇𝑖(𝑡 − 𝑡𝑖(𝑘−1)) = 𝜇(𝑡 − 𝑡𝑖(𝑘−1)) + 𝑎𝑖 

Which then yields: 

𝑙𝑜𝑔ℎ𝑖𝑘(𝑡) = 𝜇𝑖(𝑡 − 𝑡𝑖(𝑘−1)) + 𝛽𝑥𝑖𝑘 

In this equation, the fixed effect 𝑎𝑖 has been absorbed into the unspecified function of time, 

which is now allowed to vary from one individual to another. The only difference between 

this equation and the conventional Cox model is the i, subscript on 𝜇. Thus, each individual 

has their own hazard function, which is considerably less restrictive than allowing each 

individual to have their own constant.  

Stratification allows different subgroups to have different baseline hazard functions, while 

constraining the coefficients to be the same across subgroups. It is accomplished by 

constructing a partial likelihood function for each subgroup, multiplying those likelihood 

functions together, and then maximizing the resulting likelihood function with respect to 

the coefficient vector 𝛽. With the stcox command in Stata, stratification is implemented by 

specifying the option strata(caseid), which means that each of the cases is treated as a 

separate stratum.  
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Stata can also estimate a random effects Cox model, with the assumption that 𝑎𝑖 has a 

gamma distribution and is independent of 𝑥𝑖. Models of this sort are often called ‘’shared 

frailty’’ models with 𝑎𝑖 described as the frailty term. The idea is that some individuals are 

more frail than others and, hence, are more likely to experience the event. The stcox option 

for estimating such models is shared(caseid).  

Some Caveats 

Despite the attractions of fixed effects Cox regression, it also has unusual disadvantages. 

There may be a substantial loss of power compared with the conventional analysis. Even 

for those observations that are retained, the fixed effects method essentially discards 

information about variation across and only uses variation within. So, if a particular 

covariate varies a great deal across but shows little variation over time for each individual, 

the coefficient for that variable will be unreliably estimated.  

Fixed effects Cox regression is also susceptible to bias for certain kinds of variables. These 

problems are most likely to occur with data structures whereby individuals are observed 

for a fixed period of time and may have multiple events during that period, but only the 

last interval is censored. Chamberlain (1985) argued that this structure violates a basic 

condition of likelihood-based estimation because the probability that an interval is censored 

depends on the length of the previous intervals.  

In a simulation study (Allison 1996) showed that this violation does not create a serious 

problem for most predictor variables but could lead to biases in estimating the effects of 

variables that describe the previous event history. In particular, fixed effects partial 

likelihood tends to find negative effects on the hazard for the number of previous events 

and the length of the previous interval, even when those variables do not have true effects. 

This problem tends to be the most severe when the average number of events per 

individual is low, and the proportion of intervals that are censored is high.  

The Hybrid Method for Cox Regression  

The Hybrid method for Cox regression does not seem to work following Allison’s (2007) 

simulation. 

Fixed Effects Event History Methods for Non repeated Events 

Fixed effects Cox regression requires that at least some of the individual’s in a sample 

experience more than one event so that within-individual comparisons are possible. The 
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method cannot be applied to a nonrepeatable event such as death. Under certain 

conditions, it may be possible to do a fixed effets analysis for nonrepeatable events by 

treating time as discrete and applying conditional logistic regression. This type of analysis 

is called a case-crossover study (Maclure 1991).  

We regard time as consisting of discrete units, which we can enumerate t=1,2,3,… (using 

example from Allison 2007 pp.80) Let 𝑝𝑖𝑡 be the probability that husband I, dies on day t, 

given that he was still alive on the preceding day, and let 𝑊𝑖𝑡 = 1 if the wife I, was alive on 

date t, otherwise 0. We will represent the effect of wife’s vital status on the probability of 

husband’s death by a logistic regression model: 

𝑙𝑜𝑔 (
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡
) = 𝑎𝑖 + 𝛾𝑡 + 𝛽𝑊𝑖𝑡 

Where 𝛾𝑡 represents a linear effect of time on the log-odds of death and 𝑎𝑖 represents the 

fixed effects of all unmeasured variables that are constant over time. No time-invariant 

predictors are included in the model because their effects are absorbed into the 𝑎𝑖 term.  

In cases where the algorithm used to maximize the likelihood function does not converge- 

the log-likelihood quickly goes to 0 and the iteration sequence continues without end. The 

reason for this failure could be that the sequence of observations consists of a string of 0s on 

the dependent variable followed by a 1. In other words, the event always occurs at the last 

observation unit. As a consequence, time or any monotonically increase function of time 

will perfectly predict the outcome making it impossible to get maximum likelihood 

estimates for that covariate or ant other covariate in the model. In logistic regression 

literature this problem is known as complete separation (Allison 2004). 

In the above example even removing time, the issue persists as 𝑊𝑖𝑡, the dummy variable for 

wife’s death may increase with time but never decrease, it perfectly predicts the occurrence 

of a death on the last dat. Consequently, its coefficient gets larger at each iteration of the 

algorithm.  

One way to circumvent this problem is to redefine 𝑊𝑖𝑡 to be an indicator of whether the 

wife died within the previous 60 days. This covariate changes from 0 to 1 when the wife 

dies, but then goes back to 0 after 60 days.  

This would however provide no control for time. This can seriously compromise any 

conclusions drawn from a case-crossover study (Greenland 1996).  
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Another alternative is to use what Suissa (1995) called the ‘’case-time-control’’ design, the 

key innovation in this approach is the computational device of reversing the dependent and 

independent variables in the estimation of the conditional logit model. This makes it 

possible to introduce a control for time, something that cannot be done with the case-

crossover method.  

When both the dependent and the independent variables are dichotomous, the odds-ratio is 

symmetric. In the case-time-control method, the working dependent variable is the 

dichotomous covariate. Independent variables are the dummy variable for the occurrence 

of an event on a given day and some appropriate representation of time, for example, a 

linear function. Again, a conditional logistic regression is estimated with each couple 

treated as a separate stratum. Under this formulation there is no problem including time as 

a covariate because the working dependent variable is not a monotonic function of time.  

In Suissa’s formulation it is essential to include data from all individuals, both those who 

experienced the event and those who are censored. Censored individuals provide 

information about the dependence of the covariate on time, information that is not 

confounded with the occurrence of the event.  

The case-time-control method has been critiques for assuming that the dependence of the 

covariate on time is the same among those who did and did not experience the event 

(Greenland 1996). This criticism has no force is the data are limited to individuals who 

experience the events.  

The working model is defined as follows (Using example from Allison 2007 pp.83), let 𝐻𝑖𝑡 

be a dummy variable for the death of the husband I, on date t, and let 𝑃𝑖𝑡 be the probability 

that the wife’s death occurred within a specific number of days prior to day t. The logistic 

regression model is as follows: 

𝑙𝑜𝑔 (
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡
) = 𝑎𝑖 + 𝛽1𝐻𝑖𝑡 + 𝛽2𝑡 + 𝛽3𝑡2 

This model allows for a quadratic dependence on time, although other functions could be 

used instead.  
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Structural Equation Models With Fixed Effects 

By putting a model into a structural equation framework, we can accomplish several things 

that are difficult or impossible with conventional computational methods. In particular we 

can: 

- Estimate models that are a compromise between fixed and random effects 

- Construct a likelihood ratio test for fixed versus random effects 

- Estimate fixed effects models with reciprocal effects between the two response 

variables  

- Estimate fixed effects models with lagged values of the response variable 

- Estimate models with multiple indicators of latent variables 

Random Effects Models 

The random effects model:  

𝑦𝑖𝑡 = 𝜇𝑡 + 𝛽𝑥𝑖𝑡 + 𝛾𝑧𝑖 + 𝑎𝑖 + 𝜀𝑖𝑡 

Where 𝑦𝑖𝑡 is the value of the response variable for individual i, at time t, 𝑥𝑖𝑡 is a vector of 

time-varying predictors, 𝑧𝑖 is a vector of time-invariant predictors, 𝑎𝑖 denotes the random 

effects, and 𝜀𝑖𝑡 is a random disturbance term. We assume that 𝑎𝑖 and 𝜀𝑖𝑡 represent 

independent normally distributed variables with a mean of 0 and each having a constant 

variance. We also assume, at that these random components are independent of both 𝑥𝑖𝑡 

and 𝑧𝑖.  

Random effects are models for panel data that utilize those models between and within 

person variance in Y as a function of Xs and a random error term (𝑎𝑖). Unlike fixed effects, 

which assume all between-unit differences are time stable, random effects assumes all 

unmeasured between unit differences are random (uncorrelated with the error term).  

The benefits of a random effects mode are: it allows us to estimate the effect of time stable 

characteristics on Y, it is more efficient than fixed effects as it utilizes between and within 

person variation, and is also preferable to pooled OLS because it explicitly models non-

independence in the data. However, some of the drawbacks are: unobserved heterogeneity 

is an issue (the same requirements with OLS remain), and there must be variation in Y over 

time across unites, if not there’s no reason to study this change.  
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If your goal is to study time-constant independent variables, then random effects models 

are for you. Also, if you care more about model efficiency and statistical power than 

unobserved heterogeneity random effects models are a good choice.  

Multilevel Modelling and Hierarchical Linear Models (HLM) 

Multilevel Modelling 

One form of complex data is ‘multilevel’ or ‘clustered’ data. It arises when individual 

records in the data can be located in one or more subgroups that involve one or more 

‘hierarchies’. Cluster coding information must exist in the data. Multiple hierarchies need 

not overlap. Most commonly, analysis proceeds at the lower level, but it would seem 

wrong to ignore the ‘clustering’ or ‘nesting’ into higher level units. We might be really 

interested in the higher level units, deliberately designing a study to assess them, or we 

might just want to control for them. ‘Multilevel modelling’ can be thought of as any 

adjustment to a model that is designed to take appropriate account of clustering. 

Cluster coding information must exist in the data. Multiple hierarchies need not overlap. 

Most commonly, analysis proceeds at the lower level, but it would seem wrong to ignore 

the ‘clustering’ or ‘nesting’ into higher level units. We might be really interested in the 

higher level units, deliberately designing a study to assess them, or we might just want to 

control for them. ‘Multilevel modelling’ can be thought of as any adjustment to a model 

that is designed to take appropriate account of clustering. Typical examples (N=cases; k = 

clusters; kb= cases per cluster): Respondents in households (e.g. N = 5000, k=3000, kb=1.7); 

Resps. in PSUs or interviewer groups (e.g. N = 10000, k = 200, kb=50); Students in classes or 

schools (e.g. N = 2000, k = 100, kb=20); Subjects in companies / institutions (e.g. N = 500, k 

= 50, kb=10); Respondents in countries in cross-national studies (e.g. N=16000, k=16, 

kb=1000). Random effects models generally productive when both N and k are large (often 

design studies to maximise k, not kb). Random effects not inappropriate, but may be 

suboptimal, when k or kb is small.  

Multilevel structures observe that certain data has hierarchical or clustered structures. 

Multilevel models recognize the existence of such data hierarchies by allowing for residual 

components at each level in the hierarchy. For example, a two-level model which allows for 

grouping of child outcomes within schools would include residuals at the child and school 
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level- this the residual variance is partitioned into a between-school component and a 

within-school component.  

To aggregate all data to a higher level would result in an ecological fallacy. To pretend that 

level 2 variables are level 1 variables would result in magic multiplication.  

Traditional multiple regression techniques treat the unites of analysis as independent 

observations. One consequence of failing to recognize hierarchical structures is that 

standard errors of regression coefficients of higher-level predictor variables will be the most 

affected by ignoring grouping.  

In many situations a key research question concerns the extent of grouping in individual 

outcomes, and the identification of ‘outlying’ groups. In evaluations of school performance, 

for example, interest centers on obtaining ‘value-added’ school effects on pupil attainment. 

Such effects correspond to school-level residuals in a multilevel model which adjusts for 

prior attainment.  

An alternative way to allow for group effects is to include dummy variables for groups in a 

traditional OLS regression model. Such a model is called an analysis of variance or fixed 

effects model. In a multilevel model, the effects of both types of variables can be estimated.  

In a multilevel model the groups in the sample are treated as a random sample from a 

population of groups. Using a fixed effects model, inferences cannot be made beyond the 

groups in the sample.  

Multilevel modeling becomes relevant if we know of some connections between some of 

the cases in the data. This might have been deliberately intended as a focus of analysis (e.g. 

educational research samples including multiple children from the same school). Equally, 

many social surveys feature clustering of cases which are not central to analysis but should 

be controlled for. Multilevel models try to find ways to take account of the clustering 

within their data, in terms of the statistical routines for the individual level analysis. 

‘Random intercepts’ models allow the error term to feature a set difference for all the cases 

within each higher level unit (i.e. uj adds or subtracts systematically for each higher level 

unit j; the effect is basically to shift the intercept term up or down by a certain amount for 

each cluster, hence ‘random intercepts’). The clusterspecific adjustments to the intercepts 

are ‘random effects’ as they are modelled as a distribution of random values, to be 

characterised by a dispersion parameter (variance or standard deviation). 
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Conventional reasons to move from a single level to a multilevel random effects model: We 

should get more appropriate standard errors for beta coefficients (especially higher-level 

variables), we should get some additional parameters that tell us useful things about the 

overall level of influence of the cluster factor, common position: if the total influence is 

minimal, evident in a low ‘ICC’ (see later) -> no need to fit the multilevel model and 

sensible to stick with the single level model, in some circumstances, the beta coefficients 

might change as well, Influenced by the balance of ‘between’ and ‘within’ cluster effects – 

e.g. Jones 2008, models that ignore random effects are ‘unbiassed but inefficient’ (i.e. right 

betas but wrong standard errors); this only holds, though, if ‘within’ and ‘between’ patterns 

are aligned and/or appropriately decomposed, in some circumstances, it’s useful to make 

inferences about individual higher level units on the basis of their model-based residuals 

from a random effects model.  

To assess whether the random effects error decomposition improves the model we should 

compare the model deviance between the multilevel model and the equivalent single level 

model.  

Single level regression models (and other introductory statistical techniques) typically 

ignore clustering in data, so the great attraction of multilevel models is the opportunity to 

incorporate this important feature into the analysis. The main contribution of random 

effects multilevel models is to model the presumed ‘similarity’ shared by different 

members of the same cluster. In general, only 2 or 3 levels of clustering are easy to analyse 

through multilevel models: it is often easy to conceive of more complex clustering 

frameworks, but it’s not so easy to model them. Clustering need not be hierarchical: non-

hierarchical clusters (such as children in families in schools, where children from the same 

families may attend different schools) are known as ‘cross-classified’ clusters; they can be 

modelled, but the procedures are harder. Random effects multilevel models are not always 

the best way to recognise clustering: (i) the existence of clusters does not necessarily mean 

they are empirically important to the process being studied; (ii) some groups that might 

potentially be thought of as a type of clustering might not have properties that suit a 

random effects analysis (e.g. ethnic group).  

Random intercepts or ‘variance components’ models can usefully summarise the relative 

proportion of error variance associated with the different levels Intra-cluster correlation 

(‘rho’, ρ) ρ = σu 2 / ( σu 2 + σε 2 ). Total variance = σu 2 + σε 2 = (sd_cons)2+ (sdResidual)2 

= (1.471)2+ (5.147)2 = 2.16 + 26.49 = 28.65 Intra-cluster correlation = ρ = σu 2 / ( σu 2 + σε 2 ) 
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= 0.076 (ICC=proportion of error variance associated with level 2; a VPC or ‘Variance 

Partition Coefficient’ is the proportion of error variance associated with any given level).  

Intra-cluster correlation indicates the breakdown of variance between higher and lower 

level units. We often calculate the ICC for the null model (tells us about variance pattern in 

Y). ICC for models with explanatory variables needs careful expression (residual variance 

in Y). Whether or not a model ICC is non-zero is often used to decide if random effects is 

needed at all. Often, the ICC will decline when we add fixed part terms related to the 

higher level (since relatively less remains unexplained about the higher level).  

For most people, the main outputs from multilevel models are parameter estimates for the 

fixed part (beta coefficients) and random parts (error variance partition estimates). Level 1 

residuals are the individual error terms and are usually only used to check model 

assumptions. Level 2 residuals are error patterns at the group level and are substantively 

informative.  
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Hierarchical Linear Model 

The hierarchical linear model is closely related to OLS regression- it has a fixed and a 

random part. It also contains interesting information in the residuals. For the case of 2 

levels and 2 variables, X and Z the equation looks similar to OLS: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝑟𝑖𝑗 

However, the parameters Beta are different to OLS: 

 

The expected value in case X is zero and consists of three parts. Y00 is the constant term; 

average value of intercept Zj=0. Y01Zj is the influence of a level two variable Zj on the 

intercept, weighted by Y01. Finally, UOj is the random effect of the jth level two unit on the 

intercept. This final part is what makes the hierarchical linear model special. It is the 

random variation in the intercept- has a mean of zero and variance of t2, which indicates 

how much of the variance we cannot explain.  

All together the hierarchical linear model is formulated as:  

 



38 | P a g e  
 

Quasi-Experiments: Instrumental Variables  

Randomized Control Trials and Quasi-Experimental Methods 

With a lot of models there are potential issues that arise from unmeasured confounders as 

well as reverse causality (whereby we do not know which way the causal relationship 

occurs). Randomized Control Trials (RCTs) is used to establish causal inference. RCTs work 

by randomly assigning people to an experiment and a control group and calculating the 

proportion of people getting X between the two groups. The difference is the average 

causal effect (ACE) of Y. Whilst RCTs break the link between omitted factors and the 

treatment there are certain issues. RCTs are often times infeasible (we cannot always 

manipulate the treatment), costly, and unethical.  

Quasi-experimental methods offer an alternative to using RCTs. These quasi-experimental 

methods are: matching, instrumental variables, difference-in-differences, regression 

discontinuity design and fixed effects models. Within quasi-experimental studies, the 

treatment is not randomly assigned by the researcher, so we need to look for ways to 

approximate a random assignment.  

Instrumental Variables  

An instrumental variable is a variable that affects the treatment and also does not directly 

affect the outcome, as depicted below:  

 

Instrumental variables are operationalized via Two Stage Least Squares (2SLS)- using the 

stata command ivreg2. The first stage regresses the treatment (X) on the instrumental 

variable (Z) and obtains the predicted values of the treatment (X̂). The second stage 

regresses the outcome (Y) on the predicted values of the treatment (X ̂) to obtain the causal 

effect of the treatment (X) on the outcome (Y). We then finally obtain the local average 
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treatment effect- this is different from the average treatment effect as we can divide the 

population into four groups.  

Local Average Treatment Effect 

The four groups of the local average treatment effect (LATE) are: the always takers- those 

that take the treatment regardless of whether they were assigned the treatment or not. The 

never takers- those that do not take the treatment regardless of whether they were assigned 

the treatment or not. Compliers- those that take the treatment if they were assigned the 

treatment and do not take the treatment if they were not assigned the treatment (most 

important to look at for analysis). Defiers- those that take the treatment if they were not 

assigned the treatment and do not take the treatment if they were assigned the treatment.  

The IV method identifies LATE: the causal effect on the treatment on the outcome for the 

compliers only.  

There are several assumptions for LATE: 

Relevance refers to an instrument being strong enough to predict the treatment after 

controlling for covariates. If it is not strong enough then we will suffer from weak 

instrument bias. This assumption is empirically testable through an F-statistic in the first 

stage being greater than 10.   

The exclusion restriction states that the instrument should have no direct effect on the 

outcome. This is not empirically testable and thus requires substantive knowledge.  

Independence refers to the idea that there should be unobserved factors affecting both the 

instrument and the outcome. Once again this is not empirically testable and requires 

substantive knowledge.  

Monotonicity states that there should be no defiers. As with the second and third 

assumptions, this is not empirically testable and requires substantive knowledge.  

Finally, the stable unit treatment value assumption (SUTVA) states that the potential 

outcome of one individual is not affected by the treatment assignment or instrument 

assignment of the other individual (no interference). Also, no different forms or versions of 

each treatment level which lead to different potential outcomes (no hidden variations). This 

is also not empirically testable and needs substantive knowledge.  
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Instrumental variables offer the ability to estimate causal effects and eliminates the classical 

measurement error in the treatment, but this comes at a cost. It is difficult to find 

instrumental variables that satisfy the assumptions, it only reflects the complier effects- 

which in turn are vulnerable to small sample bias. There is also an internal/external 

validity trade-off.  

Quasi-Experiments: Regression Discontinuity Design  

Sharp and Fuzzy Regression Discontinuity Designs 

In quasi-experimental studies, the treatment is not randomly assigned so there is a need to 

look for ways to approximate random assignment. Regression Discontinuity Designs 

(RDDs) rely upon a discontinuity or threshold (called a running variable) that determines 

the probability of treatment assignment.  

Sharp RDDs 

Within Sharp RDDs all individuals receive treatment on one side of the threshold, and they 

do not receive treatment on the other side of the threshold. In practice this means that we 

regress outcome (Y) on the treatment (X) and a polynomial of a running variable (C). The 

gap between the regression lines constitutes the causal effect at the threshold. The slopes 

between the two regression lines can be different- they can also be non-linear. It is 

advisable to only use polynomials between one and two.  

An example of a sharp RDD would be the effect of graduating with honours on earnings. 

Graduating with honours is endogenous (students more motivated etc), we use GPA as a 

threshold. The reason this is a sharp RDD is because there is perfect compliance, passing 

the threshold means you graduate with honours and failing means you do not graduate 

with honours.  

Fuzzy RDDs 

Fuzzy RDDs state that the probability to receive treatment is larger on one side of the 

threshold than on the other side of the threshold (Imperfect compliance). Fuzzy RDDs are 

operationalized via two stage least squares. First, we must construct an instrument Z given 

a value of one if the running variable passed the threshold and a value of zero if the 

running variable did not pass the threshold (in a sharp RDD this instrument was equal to 

the treatment). In the first stage, regress the treatment (X) on the instrumental variable (Z) 
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and a polynomial of the running variable (C) and obtain the predicted values of the 

treatment (X̂). In the second stage, regress the outcome (Y) on the predicted values of the 

obtained treatment (X̂) and a polynomial of the running variable (C) to obtain the effect of 

the treatment (X) on the outcome (Y). Unlike traditional instrumental variables, the fuzzy 

RDD sees the polynomial of the running variables at both stages. LATE is at the threshold, 

the causal effect of the treatment on the outcome for the compliers at the threshold only.  

Continuity Assumption  

To identify a local causal effect at the threshold RDD needs to satisfy the continuity 

assumptions. The continuity assumption is; all observed and unobserved factors besides 

the treatment and outcome should be continuous at the threshold- there should be no jump 

at the threshold. A sufficient condition for the continuity assumption to hold is that 

individuals cannot perfectly manipulate the threshold. To assess the continuity assumption 

we can plot observed factors against the threshold and ask if there are any other 

discontinuities, if there is a placebo discontinuity, as well as include and exclude covariates, 

and producing a McCray density test (smooth distribution= no manipulation and is the 

best way to test the continuity assumption).  

Strengths and Weaknesses of RDD 

Whilst the RDD does produce an unbiased estimate of the causal local treatment effect, and 

it boasts high internal validity, as well as it being well suited for graphical representation 

and many checks for the continuity assumption, the RDD does have drawbacks. For one 

there are certain functional form issues- which polynomial to choose? Nonlinearities are 

also often mistaken for discontinuities. There is also an internal/external validity tradeoff- 

causal effect only at the threshold.  

Nonparametric RDD 

For a nonparametric RDD we must choose a bandwidth across the cutoff point beforehand. 

The question then becomes how large should the bandwidth actually be? There are luckily 

some standardized methods to choose a specific bandwidth size.  

Stata offers commands for parametric sharp RDD (reg) and fuzzy RDD (ivreg2) as well as 

graphical representation for non-parametric sharp RDD (rdplot) and fuzzy RDD (rdrobust). 

Finally stata offers a command for the McCray density test (dcdensity).  
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Modelling Count Data 

Introduction 

A count response model is a statistical model for which the dependent variable is a count. 

A count Is understood as a non-negative discrete integer ranging from zero to some 

specified greater number. There are typically four types of count data: 

- A count or enumeration of events 

- A count of items or events occurring in a given spatial area 

- A count of items or events occurring within a period of time  

- A count of the number of people having a particular disease, adjusted by the size of 

the population at risk of contracting the disease  

Basic Linear Model 

For normal linear regression, the errors are Gaussian or normally distributed.  us used to 

refer to the predicted value, without a hat. When estimating a parameter, a hat should go 

over it. The true unknown parameter has no hat.  

Models and Probability 

All parametric statistical models are based on an underlying probability distribution. The 

probability distribution function (PDF) can never be truly known. The PDF is assumed to 

describe the population data, not only the sample from it that we are actually modelling. 

This way of looking at statistics and data is referred to as frequency-based statistical 

modelling. Bayesian models look at the relationship of data to probability distributions in a 

different manner.  

Count Models  

The majority of count models are based on two probability distributions- the Poisson and 

negative binomial PDFs. On top of these there are also- the Poisson inverse Gaussian 

model, or PIG, Greeve’s three parameter negative binomial P, or NB-P, and generalized 

Poisson, or GP models.  

The Poisson distribution has a single parameter to be estimated, , or the mean, which is 

also sometimes referred to as the location parameter. The unique feature of the Poisson 
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distribution is that the mean, and variance are the same. The higher the value of the mean 

of the distribution, the greater the variance or variability in the data.  

The criterion of the Poisson distribution is referred to as the equidispersion criterion. The 

problem is when modelling real data, the equidispersion criterion is rarely satisfied. 

Overdispersion is by far the foremost problem facing analysts who use Poisson regression 

when modelling count data. Overdispersion almost always refers to excess variability or 

correlation in a Poisson model, but also needs to be considered when modelling other count 

models as well.  

Poisson overdispersion occurs in data where the variability of the data is greater than the 

mean. A model that fails to adjust for overdispersed data has biased standard errors and 

cannot be trusted. The most popular method of dealing with apparent Poisson 

overdispersion is to model the data using a negative binomial model- it has an extra 

parameter, referred to as the negative binomial dispersion parameter- also known as the 

heterogeneity or ancillary parameter.  

The negative binomial is derived as a Poisson-gamma mixture model, with the dispersion 

parameter being distributed as gamma shaped. The gamma PDF is pliable and allows for a 

variety of shapes, as a consequence, most overdispersed count data can be appropriately 

modelled using a negative binomial regression. The advantage to using a negative binomial 

regression rests with the fact that when the dispersion parameter is zero, the model is 

Poisson values of the dispersion parameter greater than zero indicate that the model has 

adjusted for correspondingly greater amounts of overdispersion. The negative binomial 

parameter will be symbolised as a(alpha). The negative binomial model cannot be used to 

model underdispersed Poisson data.  

The Poisson inverse Gaussian model is also known as the PIG model. PIG assumes that 

overdispersion in a Poisson model is best described according to the inverse Gaussian 

distribution rather than the gamma distribution. The PIG model is used via the ‘pigreg’ 

command in Stata. The PIG dispersion parameter is also known as a(alpha) so that a value 

of a=0 is Poisson.  

The three-parameter generalized negative binomial designed by William Greene is also 

called NB-P. the dispersion parameter, a, of negative binomial and PIG models has the 

same value for all observations in the model. The third parameter of NB-P, called , or rho 
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in Greek, allows the dispersion to vary across observations, providing a better opportunity 

to fit negative binomial data.  

The generalized Poisson is also known as the GP model. Similar to the first two models the 

GP has a second parameter. Also, like the first two models the GP reduces to Poisson when 

the dispersion is zero. A feature of GP models is that the dispersion parameter can have 

negative values, which indicate an adjustment for Poisson underdispersion.  

Selected count model mean-variance relationship: 

Model Mean Variance 

Poisson   

Negative Binomial  (1 + 𝑎) =  + 𝑎 

Negative Binomial 2  (1 + 𝑎) =  + 𝑎2 

Poisson inverse 
Gaussian 

 (1 + 𝑎2) =  + 𝑎3 

Negative Binomial-P  (1 + 𝑎𝑝) =  + 𝑎𝑝 

Generalized Poisson  
(1 + 𝑎)2 =  + 2𝑎3

+ 𝑎23 

 

Structure of a Count Model 

Nearly all count models follow the basic structure: 

ln() = 
0

+ 
1

𝑋1 + 
2

𝑋2 + ⋯ 
𝑛

𝑋𝑛 

To isolate the predicted mean count on the left side of the equation, both sides are 

exponentiated, giving: 

 = 𝑒0+1𝑋1+2𝑋2+⋯𝑛𝑋𝑛 
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There is not a linear relationship between  and the predictors as there is in a linear model. 

The linear relationship is between the natural log of  and the predictors. The linear 

predictor is the same as the predicted or expected value. Typically, we symbolize the 

summation of the terms of the linear predictor for each observation in a model as: 

(𝑥)𝑖 = ∑
0

+ 
1

𝑋1𝑖 + ⋯ 
𝑗
𝑋𝑗𝑖

𝑛

𝑖=1

 

With, i, indicating the observation number in the model data and j the number of predictors 

in the model. Notice that I used the standard mathematical ∑ (sigma) sybol for summation 

in the above equation. The summation starts at the quantity indicated below sigma and 

ends with the value at its top. Here we have observation number I, starting at 1 

representing the first observation in the data, and finishing with n, indirectly the last 

observation In the data being modeled.  

The relationship of the predicted or fitted statistic, , and the linear predicted, xb, is the 

same for Poisson, negative binomial, and PIG regressions. The term log() is called the link 

function since it links the linear predictor and predicted value: 

log(𝑖) = ∑
0

+ 
1

𝑋1𝑖 + ⋯
𝑗
𝑋𝑗𝑖

𝑛

𝑖=1

 

An important feature of having the natural log link for count models is that it guarantees 

that the predicted values will always be positive (i.e >0). Using a linear regression when 

modelling counts cannot make such a guarantee.   

Varieties of Count Models 

If zero counts are not a possibility for the data being modelled, then the underlying PDF 

may need to be amended to adjust for the excluded zero counts. Zero-truncated (ZT) 

models are constructed for this purpose.  

Having data with excess numbers of zeros is also a problem. The expected percentage of 

zero counts on the basis of the Poisson PDF is well under 1%. Typically analysts use either a 

two-part hurdle model or a mixture model, such as a zero-inflated Poisson (ZIP) or zero-

inflated negative binomial (ZINB).  

Hurdle models are nearly always constructed as a two-part 0,1 response logistic or probit 

regression and a zero-truncated count model. The logistic component models the 
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probability of obtaining a non-zero count. After separating the data into two components a 

binary variable is created where all counts greater than zero are assigned the value of one.  

Zeros in the count model are zeros in the logit component. The count component truncates 

or drops observations with zero values for the original counts and, for example, models the 

data as a zero-truncated Poisson. The model described here is a Poisson-logit hurdle model.  

Zero-inflated models are mixture models. They use logistic or probit regression for the 

binary component, but both components- the binary and count- include the same zero 

counts when being estimated. The overlap of zero counts means that the mixture of 

Bernoulli (distribution used in binary log regression) and Poisson distributions must be 

adjusted so that the resulting PDF sums to one. Zero-inflated models structure the binary 

component, so it models zeros not ones.  

The generalized NBP negative binomial model is one of many three parameter count 

models that can be used on count data that fail to fit any of the standard count probability 

distributions, including mixtures of distributions. The NBP model parametrizes the 

exponent on the second term of the negative binomial variance. The negative binomial 

variance function is  + 𝑎2, we may symbolize the parameter as (rho), representing the 

power − + 𝑎2. ,a, are all parameters to be estimated.  

The NB1 model has a variance function of  + 𝑎1. Since it has a linear negative binomial; 

the traditional negative binomial is sometimes referred to as the quadratic negative 

binomial because of the square exponent. The foremost use of the NBP model is to have it 

determine whether the data prefer NB1 or NB2. If  is close to 2, the analyst should use NB2 

over NB1. If alpha is 0.5 and  is 1.8, then that should be the reported model.  

It is possible that data came from population data that cannot have values below 3, or 

perhaps above 10 etc. if values are truncated at the low end of the counts the model is said 

to be left truncated; if they cannot exist higher than some cut point, the model is right 

truncated. Interval truncation exists when counts only exist between specific count values.  

Non-parametric models like the generalized additive models (GAMs) are used to assess the 

linearity of continuous predictors with respect to the response and provide information 

concerning what type of transform is needed to effect linearity.  
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Quantile count models are also non-parametric but are used to describe the empirical 

distribution underlying one’s data. Quantile count models are used when a parametric 

distribution cannot be identified.  

Bayesian modelling is appropriate when you wish to have constraints on a predictor or to 

provide information about a predictor or predictors in a model in addition to the 

information already available given the predictor. It I also useful when there does not 

appear to be a PDF underlying the data to be modelled. Using a Markov chain Monte 

Carolo (MCMC) sampling algorithm, a well-fitted empirical distribution can usually be 

found for which the user can obtain a mean and standard deviation and 95% quantiles. 

These translate to a predictor coefficient, standard error, and what is termed a credible 

interval.  

Estimation- the modelling process 

All but a very few of the count models discussed are estimated using either: IRLS or 

maximum likelihood estimation (MLE). IRSL is an acronym meaning ‘’iterative reweighted 

least squares’, which is the traditional method used to estimate models from the 

generalized linear model (GLM) family. IRLS is based on a simplification of MLEs that can 

occur when the models to be estimated are members of the one-parameter exponential 

family of probability distributions- this includes Poisson and negative binomial regressions.  

Mixed effects models use neither IRLS or MLE, instead most use quadrature although a 

number of analysts are moving to use Bayesian modelling techniques. Mixed effects models 

structure data to be modelled in panels. A number of models exist for dealing with the 

independence violation incurred by longitudinal panel models; for example, generalised 

estimating equations (GEEs), which are estimated suing a variety of IRLS algorithms.  

Bayesian models use a sampling algorithm known as Markov chain Monte Carlo (MCMC) 

to develop a posterior distribution of the data. The two foremost algorithms being 

Metropolis-Hastings and Gibbs sampling.  

Maximum Likelihood Estimation 

A probability distribution is itself defined in terms of the values of its parameter or 

parameters. We may define a probability distribution function for count models as:  

𝑓(𝑦|𝜃, 𝜙) 𝑜𝑟 𝑓(𝑦; 𝜃, 𝜙) 
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Where y is the count response, 𝜃 is the connocial location parameter or link function, and 𝜙 

is the scale parameter. Count models such as Poisson set the scale to a value of one; other 

more complex models have a scale parameter, and in some cases more than one.  

A probability function generates or describes data on the basis of parameters. In modelling, 

we seek the value of the probability distribution as defined by specific unknown 

parameters, that makes the data we have most likely. In order to do this, we in effect invert 

the relationship of y and the PDF parameters, creating what is called a likelihood function. 

The likelihood function can be defined as: 

𝐿(𝜃, 𝜙; 𝑦) 

A probability function generates data on the basis of known parameters. A likelihood 

function determines parameter values on the basis of known data. When modelling we are 

asking what parameter values of a given PDF most likely generates the data we have to 

model.  

Because of numerical considerations, statisticians maximise the log of the likelihood rather 

than the likelihood function itself. Maximum likelihood estimation (MCE) is in fact 

maximum log-likelihood estimation.  

Maximization of the log-likelihood function involves taking the partial derivatives of the 

function, setting the resulting equation to 0, and solving for parameter values. The first 

derivative, with respect to the coefficients, is called the score function, U. the second 

derivative is a matrix called Hessian matrix. The standard errors of the predictors in the 

model are obtained by taking the square root of the diagonal terms of the negative inverse 

Hessian, −𝐻1.  

In its simplest form, the Poisson probability distribution can be expressed: 

𝑓(𝑦;) =
𝑒−𝑖

𝑖

𝑦𝑖

𝑦𝑖!
 

Where y, represents a variable consistently of count values and  is the expected or 

predicted mean of the count variable y. y!, meaning y-factorial, is the product of counts up 

to a specific count value, y. f(y;) indicate the probability of y given or based on the value 

of the mean. The subscripts indicate that the distribution describes each observation in the 

data.  
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Statas ‘poisson (mu, y)’ function provides a cumulative Poisson probability for a given 

mean and count term. ‘poissonp(mu, y)’ gives a specific probability for a mean any y value. 

Plotting the values allows us to observe the differences in the shapes of the distributions. 

Mean values under 1 are shaped like negative exponential distributions. The greater the 

mean, the more normal the shape of its appearance.  

The equation for the Poisson log-likelihood, showing summation across the observations, 

can be expressed as: 

ℒ(; 𝑦) = ∑{𝑦𝑖 ln(
𝑖
) − 𝑢𝑖 − ln(𝑦!)}

𝑛

𝑖=1

 

x= ln(). This entails that =exp(x). exp(x) is called the inverse link function, which 

defines , it also defines  for the negative binomial model. Due to this relationship, 

=exp(x) is also called the exponential mean function.  

The first derivative of the preceding log-likelihood function with respect to the coefficients 

(), also called parameters when modelling, provided gradient of the Poisson log-

likelihood: 

𝜕(ℒ(; 𝑦))

𝜕
= ∑(𝑦𝑖 − exp(𝑥𝑖

′))𝑥𝑖
′

𝑛

𝑖=1

 

The hessian matrix is calculated as the second derivative of the log-likelihood function and 

is negative definite for   for the Poisson it may be expressed as: 

𝜕(ℒ(; 𝑦))

𝜕𝜕′ = − ∑(exp(𝑥𝑖
′))𝑥𝑖𝑥𝑖

′

𝑛

𝑖=1

 

Estimation of the maximum likelihood variance-covariance matrix is based on the negative 

inverse of the Hessian matrix, oft represented as ∑ (not to be confused as a sum symbol), 

given as: 

∑ = −𝐻−1 = [∑(exp(𝑥𝑖
′))𝑥𝑖𝑥𝑗

′]−1

𝑛

𝑖=1
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The square roots of the respective terms on the diagonal of the negative inverse Hessian are 

the values of predictor standard errors. A Newton-Raphson type algorithm can be used for 

the maximum likelihood estimation of the parameters: 


𝑟

+ 1 = 
𝑟

− 𝐻−1𝑔 

Which is the standard form of the maximum likelihood estimating equation. The algorithm 

typically updates estimates based on the value of the log-likelihood function. When the 

difference between old and updated values is less than a specified tolerance level- usually 

10−6 – iteration stops and the values of the various statistics are at their maximum 

likelihood estimated values.  


0
indicates estimationa t the old value of the parameters (coefficients) 

𝑛
is the new, 

updated value. Likewise for likelihood, L. tol indicates the level of tolerance needed for 

convergence, set at 10−6.  

Iterative Reweighted Least Squares Algorithms  

Poisson and negative binomial regression are often estimated using a generalized linear 

model. Stata uses ‘glm’ for an IRLS algorithm.  

A standard formulation for one-parameter models is expressed as:  

𝑓(𝑦; 𝜃) = exp {𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖) + 𝑐(𝑦𝑖)} 

𝜃𝑖is the canonical parameter or link function, defined as ln(mu) for the Poisson and NB 

models. b(𝜃𝑖) is the cumulant. The first and second derivatives and b(𝜃𝑖) define the mean 

and variance. C(y) is the nomralisation term, as given in the first equation.  

Derivation of the IRLS algorithm is based on a modification of a two-term Taylor expansion 

of the log-likelihood function where for count models y is a vector of count values and  is 

the parameter or parameters of the probability function generating y. The logic, where: 

- g() is the link function: for Poisson and NB, ln(mu) 

- 𝑔′() is the derivative of the link, or 1/mu 

- 𝑔−1() is the inverse link function, exp(x) 

- 𝑏′(𝜃) is mu, the mean 

- 𝑉 𝑖𝑠 𝑏"(𝜃), the variance: Poisson: mu; NB:mu+a*mu2; PIG: mu+a*mu3 

- Deviance: D=2{LLs-LLm} 
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Poisson Regression  

Using a Poisson model on real study data is usually unsatisfactory due to the assumption of 

equidispersion.  

All other count models are adjustments or variations from the basic Poisson model. Each of 

the following assumptions should be tested: 

1. The distribution is discrete with a single parameter, the mean, which is usually 

symbolised as either (lambda) or (mu). The mean is also understood as the rate 

parameter.  

2. The response terms, or y values, are non-negative integers, Y0.  

3. Observations are independent of one another 

4. No cell of observed counts has substantially more or less than what is expected 

based on the mean of the empirical distribution. As the value of  increases, the 

probability of zero(0) counts is reduced.  

5. The mean is the variance  

6. The Pearson chi2 dispersion statistic has a value approximating 1.0. a value of 1.0 

results when the observed and predicted variances of the response are the same  

Assumption Three 

There are two ways of testing for independence: 

Check to determine whether the data are structures in panels. When we model panels as 

though they are independence, we say that the data is pooled.  

Check the difference between the model SEs and the SEs adjusted by; employing a robust 

sandwich estimator to the SEs, bootstrapping the SEs, checking the SEs sealed by the 

dispersion statistic (model SEs multiplied by the square root of the Pearson chi2).  

Assumption Four 

Calculate the percentage of zeros in the empirical distribution and compare them with the 

frequency of zero counts expected based on a Poisson PDF with the mean determined for 

the observed distribution. If the frequencies substantially differ, a violation has occurred. A 

Chi2 test can be used for this assessment.  
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Assumption Five 

Calculate the mean and the variance of the empirical count response. If they differ then the 

assumption has been violated.  

Assumption Six 

Estimate the full model. If the dispersion varies from 1.0, the model is ‘’poisson 

extradispersed’’. A boundary likelihood ratio test can be used to assess overdispersion. A 

generalised Poisson model can test for the statistical significance of either under or over-

dispersion.  

Assumption Conclusions 

If a model fails to violate, we model using a standard Poisson model. If it does violate we 

either employ an alternative count model or if no clear distributional violation is apparent 

and the dispersion still differs from one(1), the model may in fact be only apparently 

extradispersed.  

Construct a ‘’True’’ Poisson Model 

To determine whether the single Poisson models are providing values that approximate the 

parameter values we assigned to the algorithm, we use a monte carlo programme 

algorithm.  

Poisson Regression: Modelling Real Data 

Output your dependent variable, summarise the variable to get the mean and variance and 

the % of zero counts (remember that the variance = the standard deviation squared). 

Calculate the expected number of zero counts, based on a Poisson distribution mean.  

Most statisticians ‘centre’ a continuous predictor when it starts far from zero. Centring is 

the process where the mean of the variable is subtracted from every value of the variable. 

Centring changes only the value of the intercept in the model.  

The bias resulting from overdispersion means that the p-values tell us nothing about the 

relationship of the predictor and response. If two models have the same explanatory power, 

the simpler model is preferred ‘Occam’s dictum’.  
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How to Interpret a Poisson Coefficient and Associated Statistics 

The coefficient 
𝑗
 in general is the change in the log-count of the response for a one-unit 

change in the predictor.  

The standard errors of the model parameter estimates are obtained as the square root of the 

diagonal terms of the inverse negative of the Hessian.  

The values calculated match the standard errors displayed in the coefficient table. These are 

model standard errors. The 95% CI= di coef +- 1.96*std.err.  

Many prefer to model standard errors using a likelihood method because many coefficients 

are not distributed normally. In general, standard errors based on profile likelihood are 

preferable to traditional model-based standard errors.  

Rate Ratios and Probability  

In order to have a change in predictor value reflect a change in X, we must exponentiate the 

coefficient −𝑒𝑗. Using stata’s ‘glm’ command, the ‘eform’ option exponentiates the 

coefficents and confidence intervals of the coefficients. The standard error is calculated 

using the delta method exp()*SE. calculations can be verified by displaying the table of 

incidence rate ratios. The IRR indicates the ratio of the rate of counts between two 

ascending contiguous levels of the response. Most prefer to exponentiate coefficients and 

interpret parameter estimates as rate ratios.  

Exposure: Modelling Over Time, Area, and Space 

The rate of counts, , is calculated as the number of events counted divided by the period of 

time that counting occurs, and likewise for counts per area.  

Statisticians use an offset with a model to adjust for counts of events over time periods, 

areas, and volumes. The model is sometimes referred to as a proportional intensity model.  

 is sometimes said to be an intensity or rate parameter, it is such only when thought of in 

conjunction with a constant coefficient, t. the rate parameterisation of the Poisson PDF can 

be expressed as: 

𝑓(𝑦:) =
𝑒−𝑡(𝑡)𝑦

𝑦!
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Where t represents the length of time, or exposure, during which events or counts 

uniformly occur. When t=1, the model is understood to apply individual counts without a 

consideration of size. Where unequal periods of time, area, or volume, (TAV) occur in the 

model, an offset must be given.  

Prediction 

Predicted counts and their 95% CI may be obtained from: 

Poisson…..;predict mu; predict eta, xb; predict se_eta, stdp; gen low=eta-

invnormal(0.975)*se_eta; gen up=eta+invnormal(0.975)*se_eta; gen le:=exp(low); gen 

uc:=exp(up); sort mu 

Twoway(line le:nov uc:eta, lpattern(dash1dash1)), ytitle(“predictied count and 95%CI”); 

#delimit cr 

Poisson Marginal Effects 

Marginal effects pertain only to be continuous predictors. Discrete change or partial effects 

are used for binary and categorical predictors.  

A marginal effect relates a continuous predictor to the predicted probability of the response 

variable. Other predictors are held at their mean, or median values. Basic interpretation of 

marginal effects: how the probability of the count response changes with a one-unit change 

in the value of the continuous predictor.  

For count models, the marginal effect at the mean is defined as: 

𝑀𝐸𝑚𝑒𝑎𝑛 = exp (𝑥𝑖
′

𝑘
)

𝑘
 

Average marginal effects are defined as:  

 


𝑘

ŷ 

Discrete change is used to evaluate the change in predicted probability of the response 

when a binary predictor changes values from 0 to 1. To determine the partial effects, the 

predictor in Stata must specifically be made a factor variable. Average partial effects use the 

same method as for average marginal effects, except for the factoring.  
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There are several other ways to relate predictors and the response; elasticities and semi-

elasticities (Hilbe 2011).  

Testing Overdispersion 

Basics of Count Model Fit Statistics 

If we can determine the cause of overdispersion, we can employ the appropriate model to 

use on the data. The earliest fit test used with Poisson regression is called the deviance 

goodness-of-fit test. The test is based on the deviance statistic.  

The deviance is defined as the difference between a saturated log-likelihood and full model 

log-likelihood. The saturated log-likelihood is calculated by changing every (mu) in the 

function to a y. represents a situation in which there is a parameter for every observation in 

the model. It indiciates a model with a perfect, but uninformative fit: 

𝐷 = 𝑧 ∑{ℒ(𝑦𝑖; 𝑦𝑖) − ℒ(
𝑖
; 𝑦𝑖)}

𝑛

𝑖=1

 

The Poisson log-likelihood function: 

ℒ(; 𝑦) = ∑{𝑦𝑖 log() − 
𝑖

− log(𝑦𝑖!)}

𝑛

𝑖=1

 

The saturated log-likelihood function is ylog(y)-y-log(y!). subtracting this function by the 

last equation: 

𝐷 = 𝑧 ∑ 𝑦𝑖 log (
𝑦𝑖


𝑖

) − (𝑦𝑖 − 
𝑖
)

𝑛

𝑖=1

 

Log(y!) is the normalisation term that provides for the function to sum to 1, cancels.  

The deviance goodness-of-fit (GOF) test is based on the view that the deviance is 

distributed as Chi2. Chi2 has both the mean and the scale. For the deviance GOF, this is the 

deviance statistic and residual degrees of freedom. If the Chi2 p-value <0.05, the model is 

considered well fit.  

With a p-value <0.05, the deviance GOF test indicates that we can reject the hypothesis that 

the model is not well fitted.  
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Statisticians have discovered that many models appearing to be well fitted on the basis of 

the deviance test in fact poorly fit the data. If the value of D is very large, then we can 

generally be safe in rejecting the goodness of the model fit.  

‘’deviance is in effect a measure of the distance between the most full or complete 

(saturated) model we can fit and the proposed model we are testing for fit’’. The smaller the 

distance, or deviance between them, the better the fit.  

Many use Pearson Chi2 instead of a deviance GOF test. Pearson Chi2 defines 

overdispersion, as it is the squares residuals weighted by the model variance, and summed 

across all observations in the model: 

𝑥2 = ∑
(𝑦𝑖 − 

𝑖
)2

𝑉(
𝑖
)

𝑛

𝑖=1

 

The sum of squared residuals is an absolutely raw measure of the difference in observed 

versus predicted model counts, adjusted by both the variance and size of the model. 

Adjustment is made by dividing the squared residuals by the product of the variance and 

residual degrees of freedom. The result is the dispersion statistic, if >1 shows 

overdispersion, <1 shows under dispersion. In Stata following ‘poisson’ run ‘estatgof’ to 

produce both GOF tests.  

Overdispersion 

Apparent overdispersion can sometimes be identified and the model amended to eliminate 

it. Equidispersion can this sometimes occur from: adding appropriate predictors, 

constructing interactions, transforming predictors, transforming response, adjust for 

outliers, use correct link function.  

Real overdispersion is a problem affecting the reliability of both the model parameter 

estimates and fit in general.  

The Score and Lagrance multiplier tests, test for real overdispersion. A Score test is defined 

as: 

𝑧 =
(𝑦 − )2 − 𝑦

√2
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The test is post hoc. We model, then we predict , calculate z from the preceding formula, 

and regress z using linear regression. The test is based on two assumptions: the data set on 

which the test is used is large and z is t-distributed.  

The Lagrange multiplier test is a Chi2 test, defined as: 

𝑥2 =
(∑ 

𝑖
2𝑛

𝑖=1 − 𝑛ŷ𝑖)2

2 ∑ 
𝑖
2𝑛

𝑖=1

 

With one degree of freedom.  

A majority consider the most important test of fit for a count model to be an analysis of the 

difference between observed and expected counts across the full range of counts in the 

data.  

An excess of zero counts is a common reason for overdispersion. Using Stata, we can 

determine the observed and expected values for 0 counts as follows. (pg. 92 Hilbe).  

Scaling Standard Errors: Quasi-Count Models  

Scaling of standard errors was the first method used to deal with overdispersion. The 

method replaces the w, or model weight, in the IRLS algorithm when 
𝑟
are calculated: 

 = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑧 

With the inverse square root of the dispersion statistic.  

Scaling by the Pearson dispersion statistic entails estimating the model abstracting the 

dispersion statistic, and multiplying the model standard errors by the square root of the 

dispersion, then running one additional iteration of the algorithm: 

 = (𝑋′𝑊𝑑𝑋)−1𝑋′𝑊𝑑𝑧 

Pearson based dispersion should always be used to assess could model over dispersion.  

The R quasi-poisson family option is aimed to adjust for overdispersion in Poisson models, 

but it is simply scaling the standard errors. A table of IRR statistics can be formed using the 

‘eform’ option or ‘irr’ option with ‘poisson’.  

Quasi-likelihood methods were first developed by Webberborn (1974). They are based on 

GLM principles but allow parameter estimates to be calculated based only on a 

specification of the mean and variance of the model observations without regard to those 
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specifications originating from a member of the single-parameter exponential family of 

distributions.  

Quasi-likelihood models allow us to model data without explicit specification of an 

underlying log-likelihood function. The quasi-likelihood or the derived quasi-deviance 

function is then used in an IRLS algorithm to estimate parameters just as for GLM. When 

the mean and variance functions are those from a specific member of the exponential 

family. The quasi-likelihood is defined as: 

𝑄(𝑦;) = ∫
𝑦 − 

Φ𝑉()



𝑦

 

By talking the integral (y-)/ from  to y with respect to , the resultant equation is the 

Poisson log-likelihood but without the final ln(y!) normalising term.  

The fact that the variance function is multiple by a constant changed the likelihood, or 

deviance function by dividing it by the scale(). It is the next stage in amending the Poisson 

variance function to adjust for overdispersion.  

We enter the Pearson dispersion statistic from the base model as the variance multiplier. 

This is the same as dividing the model standard errors by the square root of the dispersion. 

Compare the summary statistics of the two models- lower deviance indicates a better 

model fit. The quasi-likelihood model is not a true likelihood model and thus the standard 

errors are not based on a correct model-based Hessian matrix. The Stata command ‘irls’ is 

required for this option.  

Unlike the standard variance estimator, −𝐻()−1, a robust variance estimator adjusts 

standard errors for correlation in the data. Robust standard errors should be used when the 

data are not independent, perhaps gathered over different household, hospitals, schools 

and so forth.  

Modified sandwich variance estimators or robust cluster variance estimators provide 

standard errors that allow inference that is robust to within-group correlation but assume 

that clusters of groups are independent. Robust estimator’s may be used with any 

maximum likelihood algorithm, not only GLM-based algorithms.  

Statistics use empirical standard errors with Poisson regression as a catch-all adjustment for 

extra dispersion. If the model is in fact equidispersion. If the model is in fact equidispersed, 

the mode and SEs will be nearly identical. If the model is over- or underdispersed, using 
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robust SEs will provide more accurate information regarding the significance of the 

predictors in explaining the count response.  

Non-parametric bootstrapping makes no assumptions about the underlying distribution of 

the model. SEs are calculated based on the data at hand. Samples are repeatedly taken with 

each sample providing model estimates. The collection of vector estimates for all samples is 

used to calculate a variance matrix from which reported SEs are calculated and used to 

determine Cis. Such Cis can be constructed from percentiles in the collection of point 

estimates, or from large sample theory arguments.  

Bootstrapping has become a popular way of attempting to discover optimal SEs for model 

coefficients.  

If the values of bootstrapped or robust standard errors differ substantially from model SEs, 

this is evidence that the count model is extradispersed. Use the bootstrapped or robust 

standard errors for reporting your model, but check for reasons why the data are 

overdispersed and identify an appropriate model to estimate parameters.  

The likelihood ratio test for determining the inclusion or exclusion of predictors in a model 

is preferred over the standard Wald test, which is another way of saying regular predictor 

p-values.  

Assessment of Fit 

When modelling using either full Newton-Raphson maximum likelihood or IRLS, it is 

simple to calculate the linear predictor as: 

𝑥 = 𝑛 = 𝑎 + 
1

+ 
1

+ ⋯ + 
𝑛
 

Or 

𝑥 = 𝑛 = 
0

+ 
1

+ 
2

+ ⋯ + 
𝑛
 

Where a or 
0
 is the intercept, defined as the value of the linear predictor of model 

observations when the value of each predictor is 0.  

For members of the glm family, a link function, converts a linear predictor to a fitted or 

predictor value. The linear predictor and fit are essential components of all residuals.  
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The basic or raw residual is defined as the difference between the observed response and 

the predicted or fitted response. When y is used to identify the response, ŷ or  is 

commonly used to characterise fit: 

𝑅𝑎𝑤 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑦 − ŷ or y −  or y − E(y) 

In the preceding formula, the model variance function is V, the hat matrix diagonal as hat 

or h, and the SE of the prediction as stdp. A scale value 𝜙, is user defined and is employed 

based on the type of data being modelled.  

There are times when the Anscombe residual performs better than the standardised 

deviance (𝑅𝑑). Anscombe residuals attempt to normalise the residual so that heterogeneity 

in the data, as well as outliers, become easily identifiable.  

Anscombe defined the residual as: 

𝑅𝐴 =
𝐴(𝑦) − 𝐴()

𝐴′()√𝑉
 

Here 𝐴(. ) = ∫ 𝑉
1

3. The calculated Anscombe residuals for the Poisson model are: 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛: 3(𝑦
2

3⁄ − 
2

3⁄ )/(2
1

6⁄ ) 

And for the negative binomial:  

{
3
𝑎 [(1 + 𝑎𝑦)

2
3⁄ − (1 + 𝑎)

2
3⁄ ] + 3 (𝑦

2
3⁄ − 

2
3⁄ )}

2(𝑎2 + )
1

6⁄
 

Analysists generally prefer to graph the standardised Pearson or Anscombe residuals by    

We look for evidence of poor fit and non-random patterns by graphing residuals. Patterns 

typically mean that observations are not independent, it may also indicate that a predictor 

needs to be converted to another scale.  

The test evaluates whether the predictors with drawn from a model should in fact have 

been retained. One may use a likelihood ratio test to determine whether data should be 

modelled using a Poisson or negative binomial regression. 

The traditional likelihood ratio test is defined as: 

𝐿𝑅 = −2(ℒ𝑅 − ℒ𝐹) 
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Where ℒ𝐹 is log-likelihood for.a full or more compelte model and ℒ𝑅 is the log-likelihood 

for a reduced model.  

A Stata command ‘lrdrop1’ can be used for logit, logistic, and poisson to find predictors 

that together best fit the model.  

The boundary likelihood ratio test (BLR) is a test used on negative binomial models to 

determine whether the value of the dispersion parameter, a, is significantly different from 

0. The BLR equation is given as: 

−2(ℒ𝑃 − ℒ𝑁𝐵) 

With ℒ symbolising the log-likelihood function. The resulting value is measured by an 

upper tail Chi2 distribution with (1) degree of freedom. Only one half of the full 

distribution is used therefore the Chi2 test is divided by two.  

As a key to remember, given the value of -2 times the difference in the log-likelihood 

values, if the difference in Poisson and negative binomial log-likelihoods is less thean 1.352, 

the model is Poisson; it is greater the data needs to be modelled other than Poisson.  

Model Selection Criteria  

The Akaike Information Criterion (AIC) is found in two forms traditional: 

𝐴𝐼𝐶 = −2ℒ + 2𝑘 = −2(ℒ − 𝑘) 

And the version witht eh main AIC terms divided by n, the number of observations in the 

model: 

𝐴𝐼𝐶 =  
−2ℒ + 2𝑘

𝑛
= −2(ℒ − 𝑘)/𝑛 

Where ℒ is the model log-likelihood, k is the number of predictors and n the number of 

observations in the model. 2k is reffered to as a penalty term, which adjusts for the 

dimension of the model. As we increase the number of predictors, −2ℒ becomes smaller. 

The penalty, 2k, is added to the log-likelihood to adjust for this possible bias.  

AIC is also used by some to compare models of different sample size.  

The Bayesian Information Criterion (BIC) is formulated as: 

𝐵𝐼𝐶 = −2ℒ + 𝑘𝑙𝑜𝑔(𝑛) 
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With k indicating the number of predictors, including the intercept, and n the number of 

observations in the model. Statisticians prefer the Schwarz BIC over the traditional BIC.  

The stata command ‘abic’ display the values of most used parameterisations of the AIC and 

BIC, ‘estat ic’ is an alternative.  

Negative Binomial Regression 

The traditional parameterisation of he negative binomial is also known as NB2 negative 

binomial model, based on the value of the exponent in its second term. An NB1 model has 

also been formulated for which the second terms exponent has a value of 1. Both NB1 and 

NB2 use a maximum likelihood algorithm for estimating parameters but NB2 may also be 

estimated using an IRLS algorithm within the scope of generalised linear models.  

The negative binomial is a two-parameter model- with mean() and dispersion (a) 

parameters.  

Zero-truncated and zero-inflated models have been designed for this purpose of dealing 

with data with more zeros than are allowed by Poisson or negative binomial distributional 

assumptions.  

The NB2 has the same distributional assumptions as the poisson distribution with the 

exception that it has a second parameter- which provides for a wider shape to the 

distribution of counts than is allowed under Poisson assumptions. The negative binomial 

allows us to model a far wider range of variability than the Poisson.  

The negative binomial model is nearly always used to estimate the parameters of 

overdispersed Poisson data.  

The probability distribution can be expressed in a variety of ways, a common 

parameterisation appearing as: 

𝑓(𝑦;, 𝑎) = (
𝑦𝑖 +

1
𝑎 − 1

1
𝑎 − 1

)(
1

1 + 𝑎
𝑖

)
1
𝑎(

𝑎
𝑖

1 + 𝑎
𝑖

)𝑦𝑖 

When the negative binomial is estimated using a full maximum likelihood algorithm, both 

 and the dispersion parameter a are estimated. When estimated using glm, only  is 

estimated; a must be inserted into the algorithm as a constant.  
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When the value of a approaches 0, the model is Poisson. For , when  approaches infinity, 

the model is Poisson. When a Poisson model is overdispersed, the Poisson dispersion 

statistic, Pearson Chi2/(n-r), is greater than 1, and the negative binomial value of a is 

greater than 0. A true Poisson model has a Poisson dispersion statistic of 1 and negative 

binomial dispersion parameter of 0.  

Unless your Poisson or negative binomial model is well fitted and meets its respective 

distributional assumptions, use robust or empirical standard errors as a default.  

The Stata command ‘count fit’ obtains an overview of the differences between Poisson and 

Negative binomial models. The IRR + SEs are listed for all predictors. It helps to graphically 

view comparisons between observed and predictors counts for dependent variable.  

There are times when the NB1 fits better than the NB2. The NB-P has a second dispersion 

parameter that allows the dispersion to vary across observations. The variance functions of 

NB1 and NB2 are: 

𝑁𝐵1 =  + 𝑎  𝑜𝑟  + 𝑎1 

𝑁𝐵2 =   + 𝑎2 

The difference rests in the value of the exponent. To close between them, Greene let the 

exponent become a parameter to be estimated, called 𝜌 for power(rho). NB-P: 

𝑁𝐵 − 𝑃 =   + 𝑎𝑝 

Another test statistic allows us to determine whether NB2 is preferable to NB1, it is called a 

reverse cumulative upper tail students t-test with 1 degree of freedom: 

𝑛𝑏𝑝 − 𝑛𝑏2

𝑛𝑏𝑝𝑠𝑒
 

In order to determine the source of over- or underdispersion it may help to discover how 

the predictors contribute to the dispersion parameter. Knowing a specific predictor 

significantly contributes to the dispersion parameter allows the analyst to explore the 

predictor in more detail.  

Some major points regarding heterogenous negative binomials are: 

- Dispersion predictors (ln alpha) specify which predictors most influence the value of 

the dispersion parameter 
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- Can use NB-H to verify preconceived sources of overdispersion in the data 

- Robust SEs must be used as default  

Poisson Inverse Gaussian Regression 

The Poisson Inverse Gaussian (PIG) is similar to the negative binomial in that both are 

mixture models. The negative binomial is a mixture of Poisson and gamma distributions, 

whereas the PIG is a mixture of Poisson and inverse Gaussian distributions, with an inverse 

Gaussian variance of 
3

𝜙
.  

The dispersion for PIG will be given the name alpha, a. The dispersion is often given a 

nu,v,or phi 𝜙 . Use 𝜙 to refer to the dispersion apramteterisation indirectly with the mean 

such that 𝜙 = 1/𝑎. GLM theory symbolised the exponential family link function as . 

Greater values of the mean of the response variable in a PIG regression provide for 

adjustment of greater amounts of overdispersion than does the negative binomial model.  

The key difference in assumption for PIG over negative binomial is PIG regression is sued 

to model count data that have a high initial peak and that may be skewer to the far right as 

well as data that are highly Poisson overdispersed.  

The PIG probability distribution, as a variety of Sickol distribution can be given as:  

 

𝑓(𝑦;, 𝑎) = √
𝜙

2π𝑦3
exp  (

−𝜙(𝑦 − )2

22𝑦
) 

With {y,, 𝜙}>0.  

Constructing and Interpreting the PIG Model 

Stata commands; ‘pigreg’, ‘zipig’, and ‘ztpig’ offer ability to model PIG regression, zero-

inflated PIG, and zero-truncated PIG.  

The ‘linktest’ evaluates whether the assumption of linearity has been violated. If the square 

of the hat matrix diagonal is significant then the assumption has been violated.  
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Problems with Zeros 

When there is a substantial disparity between the expected and observed zero counts in the 

data, given the mean of the response variable and number of observations in the model, a 

Poisson distribution should likely not be used to model the data.  

Two-part Hurdle Models 

The foremost use of a hurdle model is to deal with count response variables that have 

more-or fewer- zero counts than allowed by the distributional assumptions of the count 

data. Two types are used to handle excess zeros: hurdle models and zero-inflated models.  

The idea of a hurdle model is to partition the model into two parts- first, a binary process 

generating only positive counts. The binary process is typically modelled using a binary 

model, and the positive count is modelled using a zero-truncated model. Most commonly 

used hurdle models are; Poisson-logit, NB2 logit, and NB2-probit models.  

The two processes are conjoined using the log-likelihood: 

ℒ = ln(𝑓(0)) + {ln[1 − 𝑓(0)] + 𝑙𝑛𝑃(𝑡)} 

Where f(0) represents the probability of a zero count, and P(t) represents the probability of 

a positive count. The hurdle model log-likelihood is the log of the probability of y=0 plus 

the log of y=1 plus the log of y being a positive count.  

In case of a logit model, the probability of zero: 

𝑓(0) = 𝑃(𝑦 = 0; 𝑥) =
1

1 + exp (𝑥𝑖
′

𝑏
)
 

And 1-f(0) is: 

exp (𝑥𝑖
′

𝑏
)

1 + exp (𝑥𝑖
′

𝑏
)
 

Which is the probability of y=1 

To conduct the models separately to test ‘hplogit’, create a variable equal to 1 dependent 

variable >0 and 0 otherwise. Model x on predictors- the binary component of the mode. 

Model dependent variable >0 on predictors using a zero-truncated Poisson. Compare with 

hurdle model.  
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Each predictor is evaluated in terms of the contribution it makes to each respective model.  

The best action regarding predicting is to predict for a specified component in a multi-

component model.  

Marginal effects can also be obtained. It is easiest to obtain separate marginal effects for 

each component of the model.  

The PIG-logit hurdle model will likely be of use to those who have a substantial amount of 

variability in the model, more than is accounted for by simply adjusting the zero 

components in the model.  

Zero-inflated Mixture Models 

It is not always desirable to use zero-inflated models if a negative binomial or hurdle model 

will be all that is needed. The analyst should have a theory as to why there are a class of 

observations having both observed and zero-counts. Zero-inflated models can be thought 

of as finite-mixture models.  

There are two different types of 0’s in the data- one generated by a binary component 

modelling 0’s and one in the count model component fo the mixture model. Binary 0’s ‘’bad 

zeros’’, count model 0’s ‘’good zeros’’.  

To evaluate zero-inflated models we use boundary likelihood tests- a test of one ZI model 

against another that is presumably nested in it. A Vuong test- non-nested test of a zero-

inflated model adjusts a non-inflated model. And AIC/BIC tests to be certain to check 

whether a standard non-inflated model might fit better than a zero-inflated model.  

The first component is the binary, usually modelled as a logit or probit. The binary 

component has a value of 1 for all 0’s int eh data and 0 for all other counts greater than 

zero. The count component simply models all of the counts from zero to greater than zero. 

The logic of a zero-inflated model is that counts are estimates as: 

Pr(𝑌 = 0) = Pr(𝐵𝑖𝑛 = 0) + (1 − Pr(𝐵𝑖𝑛 = 0)) ∗ Pr(𝐶𝑜𝑢𝑛𝑡 = 0) Pr(𝑌 > 0)

= (1 − Pr(𝐵𝑖𝑛 = 0)) + 𝑃𝐷𝐹𝐶𝑜𝑢𝑛𝑡 

Since we will use the logit models for the binary component of zero-inflated models, the 

logit equation for the probability of 0’s as 1/(1+exp(x): 

Pr(𝐵𝑖𝑛 = 0) =
1

1 + exp (𝑥)
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For a zero-inflated Poisson model with a logit binary component we have the equation: 

(𝑦 = 0) = log (
1

1 + exp(−𝑥
𝑏

)
+

exp(− exp(𝑥))

1 + exp(𝑥
𝑏

)
) 

(𝑦 > 0) = log (
1

1 + exp(−𝑥
𝑏

)
) − exp(𝑥) + 𝑦(𝑥) − 𝑙𝑜𝑔𝜏(𝑦 + 1) 

Where b is the subscript indicates that x is a binary model component and without 

subscript b, that x is from the count component, in this case Poisson.  

The Vuong statistic is biased toward the zero-inflated model because the same data are 

used to estimate both the binary and count component parameters.  

ZINB models may be compared with ZIP models using the boundary likelihood test, with 

p>0.05 indicating that the ZINB is preferable to ZIP. ZINB models can be compared to NB2 

models with Vuong tests.  

If the counts are distributed such that there are many counts in the ower range of numbers, 

with a long right skew, then a PIG model amy be preferred.  

If there is a real separation of mechanisms producing the 0’s and the positive counts, a 

hurdle model appears the best. If there is an overlap of 0 values, then a zero-inflated model 

be best. Keep in mind that a hurdle model is a two-part model, and a zero-inflated model is 

a mixed model.  

What Model is Probably Best? 

Response Example Models 

1: No Zeros Zero-truncated Models (ZTP; ZTNB) 

2: Excessive Zeros 
Zero-inflated (ZIP; ZINB; ZAP; ZANB); 
Hurdle Models 

3: Truncated Truncated Count Models 
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Response Example Models 

4: Censored 
Econometric and Survival Censored 
Count Models 

5: Panel 
GEE; Fixed, Random, and Mixed Effects 
Count Models 

6: Separable Sample selection, Finite Mixture Models 

7: Two-Responses Bivariate Count Models 

8: Other 
Quantile, Exact, and Bayesian Count 
Models 

 

 

Modelling Underdispersed Count Data – Generalised Poisson  

An analyst rarely encounters Underdispersed Poisson data when dealing with real data- 

but it can happen. When you do not pay attention t Underdispersed data the standard 

errors of the resulting model are overestimated. This leads to thinking that predictors are 

not significant when in fact they are.  

The types of count data that are underdispersed consist of data that are lumped more 

tightly together than should be expected based on Poisson and negative binomial 

distributional assumptions.  

When 𝛿 = 0, the model is equidispersed (i.e, it is Poisson). When 𝛿 > 0, the model is 

overdispersed; if 𝛿 < 0, the model is Underdispersed.  

Complex Data: More Advanced Models 

Small and Unbalanced Data – Exact Poisson Regression 

Exact statistics is a highly iterative technique that uses the conditional distributions of the 

sufficient statistics of the model parameters, assuring that the distribution is completely 
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determined. Exact statistics is not a maximum likelihood method, which relies on 

asymptomatic standard errors to determine the significance of predictors.  

When dealing with extradispersed data we can use either scaling or robust sandwich 

estimators. Both methods are typically the same- though statisticians tend to prefer using 

robust adjustment rather than scaling.  

Modelling Truncated and Censored Counts 

There are many times when certain data elements are lost, discarded, ignored, or otherwise 

excluded from analysis. Truncated and censored models have been developed to deal wit 

these types of data. Both models take three forms: truncation or censoring from below, 

above, and at the endpoints of an interval of counts. Count model forms take their basic 

logic from truncated and censored continuous response data, in particular from Tobit 

(Amemiya 1984) and censored normal regression (Goldberger 1983), respectively.  

The essential difference between censored and truncated models relates to how the 

response values beyond user-defined cut points are handled. Truncated models eliminate 

the values altogether; censored models revalue them to the value of the cut point. In both 

cases, the probability function and log-likelihood functions must be adjusted to account for 

the change in the distribution of the response.  

Truncated Count Models 

Starting with the basic Poisson probability mass function, defined as: 

𝑃𝑟𝑜𝑏(𝑌 = 𝑦) =
𝑒−𝜇𝑖𝜇

𝑖

𝑦𝑖

𝑦𝑖!
, y=0,1,… 

When discussing zero-truncated Poisson models in section 7.1, we adjusted the preceding 

Poisson distribution to account for the structural absence of zeros. We discovered that the 

probability of a zero count fo the Poisson distribution is exp (−𝜇), for the negative binomial 

(1 − 𝑎𝜇)−1/2, ad for the PIG exp ((
1

𝑎
) ∗ (1 − 𝑠𝑞𝑟𝑡 (1 +

2

𝑎𝜇
))).  

When truncating a zero count from the Poisson distribution , the probability of zero is 

subtracted from 1, and the result is divided into the full Poisson PDF; that is, 𝑃𝐷𝐹/(1 −

exp(−𝜇)). The same is the case for other distributions, except that the formula differs.  
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Going farther from 0, the Poison probability of 1 Is 𝜇 ∗ exp (−𝜇). If truncation is at 1, then 

both 0 and 1 must be excluded from the distribution and an adjustment for both must be 

made in the resulting adjusted PDF. We do this by summing the two probabilities and 

subtracting from the sum of 1. This value is divided into the Poisson PDF: 

𝑃𝑟𝑜𝑏(𝑌 = (𝑦 = 0,1)) =
𝑒−𝜇𝑖𝜇

𝑖

𝑦𝑖

(1−(𝑒−𝜇𝑖+𝜇𝑖𝑒−𝜇𝑖))𝑦𝑖!
, y=2,3,… 

This distribution can be called a left-truncated at 1 Poisson distribution. When establishing 

a left truncation at point 1, we place a cut point, C, at 1, and the first number to be in the 

nontruncated distributions is C+1. 

The left-truncated Poisson PDF in general is Poisson PDF/Prob(y>C). Numerically this 

appears as: 

𝑃𝑟𝑜𝑏(𝑌 = 𝑦┃Y > C) =

exp (−)𝜇𝑦

𝑦!

1 − ∑
exp (−𝜇)𝜇𝑗

𝑗!
𝐶
𝑗=0

,  𝑓𝑜𝑟 𝑦 = 𝐶 + 1, 𝐶 + 2, … 

When a cut point is on the right side, it is the higher-value end of the sorted distribution: 

𝑃𝑟𝑜𝑏(𝑌 = 𝑦┃Y < C) =

𝑒−𝜇𝑖𝜇𝑖
𝑦𝑖

𝑦𝑖!

𝑃𝑟𝑜𝑏(𝑦𝑖 < 𝐶)
=

𝑒−𝜇𝑖𝜇𝑖
𝑦𝑖

𝑦𝑖!

∑
𝑒−𝜇𝑖𝜇𝑖

𝑗𝑖

𝑗𝑖!
𝐶−1
𝑗=0

,  𝑓𝑜𝑟 𝑦 = 0,1, … , 𝐶 − 1 

Employing the user-created Stata treg command (Hardin and Hilbe 2014b), you can create 

left and right cut point-based models.  

If for example we wanted to model visits to the doctor, but only for patients who have in 

fact visited a physician during the calendar year 1984. More-over, for our example, suppose 

also that visits were not recorded for more than 8 visits. We then model the data with a left 

truncation at 0 and right truncation at 19. This is called interval truncation.  

Censored Count Models 

The censoring that is understood when dealing with count models differs from the 

censoring that occurs in survival models. A survival-type parameterisation for censoring 

was developed by Hilbe (1998) and is discussed in detail in Hilbe (2011). The difference is 
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that instead of truncated values being excluded from the truncated distribution, censored 

values are revalued to the value of the cut point. The distinction is subtle but important:  

Left censoring: Left: (≤ 𝐶), 

If C=3, 3 is smallest value in the model. Values that may have been lower are revalued to C. 

Any response in the data that is less than 3 is also considered to be less than or equal to 3.  

Right censoring: Right: (𝑌 ≥ 𝐶),   

If C=15, 15 is the highest observed value in the model. Values that may have been greater in 

the data are revalued to the value at C. Any response in the data that is greater than 15 is 

also considered to be greater than or equal to 5. 

Right censoring is a more common application when using censored Poisson or negative 

binomial regressions, whereas left truncation is more commonly used with truncation 

models.  

cpoissone is a Stata command used to model censored models. 

Poisson-Logit Hurdle at 3 Model 

An extended type of hurdle model that branches over to finite mixture models, which we 

discuss next, can be created by setting the hurdle at a higher place in the range of counts 

than at 0.  

Counts with Multiple Components – Finite Mixture Models 

Finite mixture models have been developed to model a situation where we suspect that the 

response variable of our model consists of counts that have been generated from different 

data-generating mechanisms. That is, when the data to be modelled are generated from 

more than one source.  

Adding Smoothing Terms to a Model – GAM 

Generalised additive models (GAMs) are a class of models based on generalised linear 

models for which the linear form of the model, ∑ 𝑥𝛽, is replaced by a sum of smoothed 

functions,  𝑠(𝑋). The method is used to discover non-linear covariate effects that may not be 

detectable using traditional statistical techniques.  
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The key concept in GAM modelling is that the partial residuals of continuous predictors in 

a model are smoothed using a cubic spline, loess smoother, or another type of smoother 

while being adjusted by the other predictors in the model. The parameters of the smooths 

are related to the bandwidth that was used for the particular smooth. The relationship that 

is traditionally given for the GAM distribution is: 

𝑦 = 𝛽0 + ∑ 𝑓𝑗(𝑋𝑗) + 𝜀

𝑗

𝑖=1

 

The purpose of using GAM is to determine the appropriate transformation needed by a 

continuous predictor in order to affect linearity. A GAM employs the iteratively reweighted 

least squares (IRLS) algorithm used in GLM models for estimate. At each iteration, the 

partial residuals of each relevant continuous predictor in the model are smoothed. Partial 

residuals are used since they remove the effect of the other model predictors.  

When All Else Fails: Quantile Count Models 

When we simply cannot obtain a reasonably fitted Poisson, negative binomial, PIG, or some 

variation of these models based on a PDF or likelihood function, we may try to model the 

empirical distribution of counts without assuming an underlying probability or likelihood 

function. That is, we discover a shape to the distribution as we find it and model it using 

quantile techniques. 

The idea is to model the discrete data with a jitter in such a manner that the distribution 

appears as a continuous variable. The response is structured as:  

𝑧 = 𝑦 + 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

Z is linearized at the conditional mean of each quantile of the distribution as exp(x), which 

keeps the distribution positive.  

The traditional quantile regression is based on the median, or other quantiles, of a Gaussian 

distribution.  

If the coefficients and standard errors are the same when modelling with fewer iterations, then an 

analyst can be more confident that the model is working correctly. Marginal effects may be 

calculated using the Stata command qcount_mfx. The model should be compared with a negative 

binomial model on the same data.  
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A Word About Longitudinal and Clustered Count Models 

There are two broad types of models that are commonly used for longitudinal and 

multilevel modelling. The first is generalised estimating equations (GEEs), which is a 

population-averaging method of estimation. GEE models are not true likelihood-based 

models but rather are examples of quasi-likelihood models. The other type of model is 

referred to as a subject-specific model. Most random- and mixed-effects models are in this 

class of models.  

Generalised Estimating Equations (GEEs) 

GEE models are an extension of the generalised linear model (GLM) where the variance 

function is adjusted using a correlation matrix. Several standard correlation structures are 

used for GEE analysis: 

Independence- an identity matrix, no correlation effect is specified at all 

Exchangeable –a common correlation value provided to each panel or cluster in the data 

Autoregressive – lag correlation for longitudinal and other time-dependent variables 

Unstructured – separate correlation values for each panel or cluster in the data 

Stata’s xtgee command is a full GEE package.  

Mixed-Effects and Multilevel Models 

Mixed-effects models are panel models that are combinations of fixed and random effects, 

both of which have models named for them. Fixed effects are generally regarded as 

emphasising the measurements of the effects themselves. Random effects are generally 

structured so that they are normally distributed with a mean of 0 and a standard deviation 

of 𝜎2. The random effects themselves are not generally estimated directly but are 

summarised based on their underlying variance-covariance matrices.  

Random-effects models are often divided into two categories – random intercept, and 

random slopes or coefficients. A random-intercept model is the simplest random-effects 

model, being structured so that only the intercepts are random. They vary in value across 

panel intercepts if the coefficients themselves vary between panels, the model is a random-

slopes model.  
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Missing Data and Multiple Imputation  

Foundations and Introduction 

Missing data has meant that the available data for analysis were unbalanced, thus complicating the 

planned analysis and in some instances rendering it unfeasible. The wider question of the 

consequences of nontrivial proportions of missing data for inference was neglected until a seminal 

paper by Rubin (1976). This set out a typology for assumptions about the reasons for missing data 

and sketched their implications for analysis and inference.  

Missing data is an essential component of any longitudinal data analysis – the major 
concern being that missing data and non-response is bound to affect the inferences made by 
the analysis of longitudinal studies (Hawkes and Plewis, 2006: 479; Silverwood et al., 2021). 
The various factors that account for sample attrition in the datasets outlined above have the 
potential to present real issues as it relates to comprehensive data analysis. For the 
purposes of analysis those that exit the sample due to death or emigration are considered 
‘natural’ exists from the original sample. Those, however, that either cannot be found, reject 
continued participation etc. are individuals that we hold partial data on – being able to 
utilize this partial data within my analysis could be beneficial.  

When dealing with missing data there are three primary types of classification. The first is 
missing completely at random (MCAR), meaning that missingness does not depend on 
observed or unobserved values. The second, being missing at random (MAR), meaning that 
given observed values missingness does not depend on the unobserved ones. Finally, 
missing not at random (MNAR) meaning that missingness depends on unobserved values 
(Silverwood et al 2021). If data is found to be MAR then approaches like multiple 
imputation (MI), inverse probability weighting are made available – the former being 
extensively documented with the NCDS in particular in (Hawkes and Plewis 2006).  

When dealing with missing data there are multiple methods to tackle the problem. The first 
is listwise deletion. Listwise deletion removes all observations from the data which have a 
missing value in one or more of the variables included in analysis. This is also known as 
Complete Records Analysis (CRA). The CRA approach is unpredictable, there is no way to 
know the consequences for this loss of information (Carpenter and Kenward, 2012).  

A second method that deals with missing data is the use of survey weights. Survey weights 
take into account missingness, Inverse Probability Weighting (IPW) creates weighted copies 
of complete records so as to remove selection bias introduced by missing data. Whilst IPW 
is a method of dealing with missing data, alternatives such as multiple imputation are 
regarded as much more efficient (Seaman et al., 2012; Seaman and White, 2013).  

A third method involves Multiple Imputation (MI). This method substituted missing data 
with substituted values. MI is an attractive method because it is practical and widely 
applicable (Carpenter and Kenward, 2012).  



75 | P a g e  
 

Full-information Maximum Likelihood (FIML) is another method for dealing with 
missingness. For the regression based analysis including interactions with data from at least 
two stages of the life course, (Silverwood et al., 2021) as the current analysis is, multiple 
imputation is plausible and more flexible than FIML. This flexibility stems from the ability 
to include auxiliary variables more easily within the imputation phase as well as being 
readily able to after imputing data sets obtain point estimates and standard errors at ease 
(Carpenter and Kenward, 2012). Recently, there has been some debate surrounding FIML 
vs MI approaches.  

Paul Allison in a series of articles (Allison, 2012a, 2012b, 2015) argues that FIML is 1) 
simpler to implement, 2) FIML has no incompatibility between an imputation model and an 
analysis model, 3) FIML produces a deterministic result rather than a different result every 
time, and 4) FIML is asymptomatically efficient. Firstly, MI does have greater variability 
than FIML but that increased choice in model selection is not necessarily a negative so long 
as proper procedures are followed – in fact greater variability of choice has the potential to 
make MI a more attractive candidate for dealing with missingness over FIML. Secondly, MI 
models only run into an incompatibility problem when the MI model is inconsistent from 
the CRA model – something that with appropriate testing and open science practices 
detailing the model construction, shouldn’t happen. Thirdly, MI models are deterministic 
provided the same seed is used each time you run the imputation. The only time this would 
not be plausible would be a scenario where open science practices were not followed, and 
fellow researchers could not access the MI seed. Finally, the argument that FIML is 
asymptotically efficient only holds true to a certain extent. MI models reach asymptotic 
efficient by running an infinite number of imputations – though you can reach near to full 
efficiency with a relatively small number of imputations, Allison (Allison, 2015) argues 
around 10. Overall, whilst FIML does offer some advantages, there is nothing so 
considerable as to desire FIML over MI. So long as open science procedures are upheld, 
most major critiques of MI are dealt with. As such subsequent analysis uses CRA and MI to 
compare the substantive conclusions between the two and to understand if missingness 
impacts interpretation. 

When dealing with MI the subsequent question that naturally follows is how many 
imputations is sufficient? Silverwood et al (2021) suggest that anything around 50 
imputations would be sufficient for reliable estimation of point estimate and estimating p-
values with little error. Though sometimes with large samples with sizeable missingness 
more imputations may be required. 

Multiple Imputation by Chained Equations is a tool developed to address missing data on 
all variables within a given model at the same time. It does this by filling in missing values 
in multiple variables iteratively by using chained equations Multiple imputation models 
are estimated using the mi suite in Stata. This suite is compatible with the svy suite and so 
can also adjust for complex survey design. 

Whilst multiple imputation does help when it comes to missingness, it does have some 
drawbacks. Goodness-of-fit statistics for example are not able to be used – R2 and BIC most 
prominently. Therefore, it is not possible to assess the more appropriate or parsimonious 
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model – it is simply possible to compare the substantive effects between a complete records 
analysis and a multiple imputation model. For multiple imputation models to be compared 
to a complete records analysis the former needs to be ‘‘congenial’’ (White, Royston and 
Wood, 2011) with the latter. Congeniality or consistency in this respect means that the same 
variables that are in the complete record analysis are identical to those included in multiple 
imputation. If the variables between complete records analysis and multiple imputation 
models differ then the correct variance/covariance matrix will not be estimated and a 
substantive comparison between the two will become impossible and impracticable due to 
a loss of statistical power (Von Hippel, 2009; Lynch and Von Hippel, 2013).  

Multivariate imputation by chained equations (MICE) is a form of multiple imputation that 
fills in or imputes missing data within a given dataset through iterative predictive models 
or k imputations. This specification is required when imputing a variable that must only 
take on specific values such as the categorical nature of the economic activity response 
variable within the current analytical model. Using MICE, each imputation k is drawn from 
the posterior distribution of the parameters in the given imputation model, then the model 
itself is imputed (Carpenter and Kenward, 2012). To create the kth imputation new 
parameters are drawn from the posterior distribution. Multiple Imputation following MICE 
draws from Bayesian influences on the distribution of missing data upon observed data. An 
important advantage of Multiple Imputation is that it can be applied for data missing at the 
response variable or its covariates (Carpenter and Kenward, 2012). 

Choosing the number of imputations is difficult. Previous literature on the topic suggests 
that anywhere between 3-5 imputations is sufficient to obtain acceptable properties 
(Carpenter and Kenward, 2012). Though some modern literature suggest closer to 50 
imputations (Silverwood et al., 2021). However, if there is a desire to estimate small p-
values or have an MI estimator of the fraction of missing information, greater numbers of 
imputations are required. Carpenter and Kenward (2012) suggest two routes. If an analysis 
after imputation is clear-cut after a small number of imputations, there is no need to 
perform more. If, however after imputation the inference is less clear-cut take K = 100, or 
100 imputations. Others promote a slightly different interpretation. White et al (2010) and 
Bodner (2008) suggest using the Fraction of Missing Information (FMI) as a baseline for the 
minimum required imputations. If the maximum FMI in a given model is 44 per cent then 
44 imputations is at minimum suggested. When following this assumption White et al 
(2010) found standard errors and p-values were considerably reduced and stabilised.   

After Multiple Imputation is performed, four key statistics are relevant to focus upon: 
variance total, Relative Variance Increase (RVI), Fraction of Missing Information (FMI), and 
the Relative Efficiency (RE).  

The primary usefulness of multiple imputation relies upon its variance estimation. The total 
variance in multiple imputation is the sum of multiple sources of variance: within 
imputation variance, between imputation variance and additional sampling variance. The 
latter of which is calculated by the within imputation variance divided by the number of 
imputations. The variance total is directly related to how standard errors are calculated. 
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Unlike simple imputation methods, multiple imputation estimates SEs in such a way that 
the SEs for each parameter estimate are the square root of their variance totals.  

The RVI or Relative Variance Increase is the proportional increase in total sampling 
variance that is due to missing information. Any variable that has a large amount of 
missingness or are weakly correlated with other variables in the imputation model with 
tend to have larger than average RVIs. Weakly correlated auxiliary variables will always 
trend towards large RVIs.  

The FMI is related to the RVI (which in turn is related to the variance total). The FMI is the 
proportion of the total sampling variance that is due to missing data. It is estimated based 
upon the percentage of missingness for a particular variable and how correlated this 
variable is with other variables in the imputation model. When a variable has a high FMI 

this can be an indicator of a problematic variable which may cause convergence issues.  

Finally, the relative efficiency or RE relates to how well the true population parameters are 
estimates. It is related to both the amount of missingness as well as the number of 
imputations within an imputation model. The RE is a comparative measure. It compares 
the relative efficiency of the current model variable to performing an infinite number of 
imputations. It is relatively easy to achieve a high RE on a given imputation model with a 
small number of imputations however this does not mean that the standard errors within 
the given imputation model will be calculated accurately.  

Auxiliary variables are variables in the data set that are either correlated with a missing 
variable or variables but are not a part of the main analytical model of interest. They are 
included within the imputation model to increase accuracy and statistical power to make 
the MAR assumption more plausible. Making the MAR assumption more plausible is done 
by including auxiliary variables – variables that can be used to predict missingness on a 
given variable. Auxiliary variables are important when there are high levels of missingness 
upon a given variable (Johnson and Young, 2011; Young and Johnson, 2011). There is no 
strict threshold for what an auxiliary variable needs to be in order to be included within the 
imputation however some have recommended an r > 0.4 on at least one of the analytical 
variables within the model (Allison, 2012a). Though this is disputed (Enders, 2010). Others, 
such as Silverwood et al (2021) instead argue that if an auxiliary variable is predictive of the 
outcome variable then that makes them suitable for inclusion within the imputation model. 
An auxiliary variable does not have the requirement that the given variable has to have 
complete information to be valuable – auxiliary variables can still effective when they have 
missingness (Enders, 2010).  

Prior to imputation it is best to explore the distribution of variables comparative to 
complete and non-complete cases. In the presence of a MCAR mechanism all distributions 
should be the same comparatively. If this is not the case, then this is suggestive of a MAR or 
MNAR mechanism. These imbalances present themselves in every variable within the 
model except for sex. This is unsurprising considering that sex as a variable presents zero 
missingness. The distributions of the variables thus far present some indications of a MAR 
or MNAR mechanism being present.  
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With all the variables in the model being categorical in nature, convergence issues are a 
possibility. This risk is increased if a model has many categorical variables. Failure to 
converge was a consistent problem. Without resorting to re-coding analytical variables, the 
decision was made to drop one of the auxiliary variables in order to produce an imputed 
model1.  

After performing the imputation, it is often useful to graph the means and standard 
deviations saved through the tracing subcommand when using MICE – autocorrelation 
plots would be useful but are only available for non-MICE related imputations. By 
graphing variables means and standard deviations through trace plots for example over 
each imputation, any discrepancy or deviation can easily been found. If this were to be a 
case this would be problematic for the imputation model and suggest that further 
imputations would be required (White, Royston and Wood, 2011). The means and standard 
deviations of imputed values from each iteration2 were checked to see the distributions of 
each variable against the imputations. These graphs are seen below. To note, due to the sex 
variable having zero missingness, no graph was produced as no imputations on that 
variable were required. As illustrated all analytical variables that were imputed have a 
relatively stable mean and standard deviation across the iteration numbers.  

Multiple imputation (MI) is attractive because it is both practical and widely applicable.  

Reasons for Missing Data 

All datasets consist of a series of units each of which provides information on a series of 

items. Within this framework, it is useful to distinguish between units where all the 

information is missing, termed unit nonresponse, and units who contribute partial 

information, termed item nonresponse. The statistical issues are the same in both cases, and 

both can in principle be handled by MI- though much of the focus of MI rests with the 

latter.  

Patterns of Missing Data 

It is very important to investigate the patterns of missing data before embarking on a 

formal analysis. Key questions concern the extent and patterns of missing values, and 

whether the pattern is monotone, as if it is, this can considerably speed up and simplify the 

analysis. 

Missing data in a set of p variables are said to follow a monotone missingness pattern if the 

variables can be re-ordered such that, for every unit i, and variable j. 

 
1 The variable in question was acatnn236, a categorical variable.  
2 Burnin was 20 during imputation.  
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- If unit i, is observed on variable j, where j=2,…,p, it is observed on all variables j’<j, 

and 

- If unit i, is missing on variable j, where j=2,…,p, it is missing on all variables j’>j 

A natural setting for the occurrence of monotone missing data is a longitudinal study, 

where units are observed either until they are lost to follow-up, or the study concludes. A 

monotone pattern is thus inconsistent with term missing data, where units are observed for 

a period, missing for the subsequent period, but then observed.  

Consequences of Missing Data 

We may think  of the missing data mechanism as a second stage in the sampling process, 

but one that is not under our control. It acts on the data we intended to collect and leaves us 

with a partially observed dataset. The missing data mechanism cannot usually be 

definitively identified from the observed data, although the observed data may indicate 

plausible mechanisms. Thus, we will need to make an assumption about the missingness 

mechanism in order to draw inference. The process of making this assumption is quite 

separate from the statistical methods we use for parameter estimation. Further, to the extent 

that the missing data mechanism cannot be definitively identified from the data, we will 

often wish to check the robustness of our inferences to a range of missingness mechanisms 

that are consistent with the observed data.  

Due to the mechanisms causing the missing data being rarely able to be definitively 

established we will often wish to explore the robustness of our inferences to a range of 

plausible missingness mechanisms- a process we call sensitivity analysis.  

From a general standpoint, missing data may cause two problems: loss of efficiency and 

bias.  

First, loss of efficiency, or information, is an inevitable consequence of missing data. 

Unfortunately, the extent of information loss is not directly linked to the proportion of 

incomplete records. Instead, it is intrinsically linked to the analysis question.  

Faced with an incomplete dataset, most software automatically restricts analysis to 

complete records. The consequence of this for loss of information is not always easy to 

predict. Nevertheless, in many settings it will be important to include the information from 

partially complete records. Not least of the reasons for this is the time and money it has 

taken to collect even the partially complete records. Second, the subset of complete records 
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may not be representative of the population under study. Restricting analysis to complete 

records may then lead to biased inference. The extent of such bias depends on the statistical 

behaviour of the missing data. A formal framework to describe this behaviour is thus 

fundamental and such a framework was originally elucidated in a seminal paper by Rubin 

(1976). 

Inferential Framework and Notation 

We suppose we have a sample of n units, which will often be individuals, from a 

population that for practical inferential purposes can be considered infinite. Let 𝑌𝑖 =

(𝑌𝑖,1, 𝑌𝑖,2, … , 𝑌𝑖,𝑝)𝑇 denote the p variables we intended to collect from the ith unit, i=1…,n. We 

wish to use these data to make inferences about a set of p population parameters 𝜃 =

(𝜃1, … , 𝜃𝑝)𝑇 . 

For each unit i=1,…,n let 𝑌𝑖,𝑂 denote the subset of p variables that are observed, and 𝑌𝑖,𝑀 

denote the subset that are missing. Thus, for different individuals 𝑌𝑖,𝑂 and 𝑌𝑖,𝑀 may well be 

different subsets of the p variables. If no data are missing, 𝑌𝑖,𝑀 will be empty. 

Next, again for each individual i=1,…,n and variable j=1,…,p, let 𝑅𝑖,𝑗 = 1 𝑖𝑓 𝑌𝑖,𝑗 is observed 

and 𝑅𝑖,𝑗 = 0 𝑖𝑓 𝑌𝑖,𝑗 is missing. Let 𝑅𝑖 = (𝑅𝑖,1, … , 𝑅𝑖,𝑝)𝑇.. Consistent with the definition of 

monotone missingness patterns, the pattern is monotone if the p variables can be re-

ordered so that for each unit i, 

𝑅𝑖,𝑗 = 0 ⇒ 𝑅𝑖,𝑗′ = 0 𝑓𝑜𝑟 𝑗′ = 𝑗 + 1, … , 𝑝 

The missing value mechanism is then formally defined as: 

Pr (𝑅𝑖I𝑌𝑖) 

The probability of observing unit i’s data given their potentially unseen values 𝑌𝑖. It is 

important to note that, in what follows, we assume that unit i’s data exist. In other words, if 

it had been possible for us to be in the right place at the right time, we would have been 

able to observe the complete data. What the above equation describes therefore, is the 

probability that the data collection we were able to undertake on unit i yielded values on 

𝑌𝑖,0. Thus, until we consider sensitivity analysis the missing data are not counter-factual.  

Missing Completely At Random (MCAR) 

We say that data are Missing Completely At Random (MCAR) if the probability of a value 

being missing is unrelated to the observed and unobserved data on that unit. Algebraically:  
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Pr(𝑅𝑖|𝑌𝑖) = Pr (𝑅𝑖) 

Since, when data are MCAR, the chance of the data being missing is unrelated to the values, 

the observed data are therefore representative of the population. However, relative to the 

data we intended to collect, information has been lsot.  

Missing At Random (MAR) 

We say data are Missing At Random (MAR) if given, or conditional on, the observed data 

the probability distirbution of 𝑅𝑖 is independent of the unobserved data. Recalling that for 

individual i we can partition 𝑌𝑖 as (𝑌𝑖,𝑂, 𝑌𝑖,𝑀) we can express this mathematically as: 

Pr(𝑅𝑖|𝑌𝑖) = Pr(𝑅𝑖|𝑌𝑖,𝑂) 

This does not mean- as is sometimes supposed- that the probability of observing a variable 

on an individual is independent of the value of that variable. Under the MAR the chance of 

observing a variable will depend on its value. Crucially though, given the observed data 

this dependence is broken.  

Missing Not At Random (MNAR) 

If the mechanism causing missing data is neither MCAR nor MAR, we say it is Missing Not 

At Random (MNAR). Under a MNAR mechanism, the probability of an observation being 

missing depends on the underlying value, and this dependence remains even given the 

observed data. Mathematically: 

Pr(𝑅𝑖|𝑌𝑖) ≠ Pr(𝑅𝑖|𝑌𝑖,𝑂) 

While in some settings MNAR may be more plausible than MAR, analysis under MNAR is 

considerably harder. This is because under MAR showed that conditional distirbution of 

partially observed variables given fully observed variables are the same in units who do, 

and do not, have the data observed. However, MAR does not hold if MNAR holds.  

It follows that influence under MNAR involves an explicit specification of either the 

selection mechanism, or how conditional distributions of partially observed variables given 

fully observed variables differ between units who do, and do not, have the data observed.  

Formally, we can write the joint distribution of unit i’s variables, 𝑌𝑖, and the indictor for 

observing those variables, 𝑅𝑖 as: 

Pr(𝑅𝑖|𝑌𝑖) 𝑃𝑟 Pr(𝑌𝑖) = Pr(𝑅𝑖, 𝑌𝑖) = Pr(𝑌𝑖|𝑅𝑖) Pr(𝑅𝑖) 
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In the centre is the joint distribution, and this can be written either as: 

- A selection model – the LHS of above equation, i.e., a product of (i) the conditional 

probability of observing the variables, given their values and (ii) the marginal 

distribution of the data, OR 

- A pattern mixture model – the RHS of above equation, i.e., a product of (i) the 

probability distribution of the data within each missingness pattern and (ii) the 

marginal probability of the missingness pattern 

This we can specify a MNAR mechanism either by specifying the selection model (which 

implies the pattern mixture model) or by specifying a pattern mixture model (which 

implies a selection model). Depending on the context, both approaches may be helpful. 

Unfortunately, even in apparently simple settings, explicitly calculating the selection 

implication of a pattern mixture model, or vice versa, can be awkward.  

Ignitability 

If, under the assumption about the missingness mechanism, we can construct a valid 

analysis that does not require us to explicitly include the model for that missing value 

mechanism, we term the mechanism, in the context of this analysis, ignorable.  

A common example of this is a likelihood-based analysis is assuming MAR. However, as 

we see below there are other settings, where we do not assume MAR, that do not require us 

to explicitly include the model for the missingness mechanism yet still result in valid 

inference. A complete records regression analysis is valid if data are MNAR dependent 

only on the covariates.  

Using Observed Data to Inform Assumptions About the Missingness Mechanism 

The observed data can help frame plausible assumptions about the missingness 

mechanism- in other words assumptions which are consistent with eh observed data. 

Exploratory analyses of this nature are important for (i) assessing whether a complete 

records analysis is likely to be biased and (ii) framing appropriate imputation models. Two 

key tools for this are summaries of fully observed, or near-fully observed variables by 

missingness pattern and logistic regression of missingness indicators on observed, or near-

fully observed variables.  
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Implications of missing data mechanisms for regression analyses 

Usually, we wish to fit some form of regression model to address our substantive 

questions. Here, we look at the implications, in terms of bias and loss of information, of 

missing data in the response and/or covariates under different missingness mechanisms. 

We first focus on linear regression; our findings there hold for most other regression 

models, including relative risk regression and survival analysis.  

Partially observed response 

Suppose we wish to fit the model 

𝑌𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝑒𝑖 

But Y is partially observed. Let 𝑅𝑖 indicate whether 𝑌𝑖 is observed. For now assume that the 

𝑥𝑖 are known without error; for example it may be a design variable. Then the contribution 

to the likelihood for 𝛽 = (𝛽0, 𝛽1) from unit i, conditional on 𝑥𝑖, is 

𝐿𝑖 = Pr(𝑅𝑖 , 𝑌𝑖|𝑥𝑖) = Pr(𝑅𝑖|𝑌𝑖, 𝑥𝑖) Pr (𝑌𝑖│𝑥𝑖) 

Assume, as will typically be the case, that the parameters of Pr(𝑌𝑖|𝑥𝑖) , 𝛽, are distinct from 

the parameters of Pr (𝑅𝑖│𝑌𝑖, 𝑥𝑖).  

Provided that Y is MAR given the covariates in the model, units with missing response 

have no information about 𝛽.  

The controibution to the likelihood for an individual with missing response is obtained by 

integrating (for discrete variables summing) over all possible values of the missing 

response variable 𝑌𝑖, 𝑔𝑖𝑣𝑒𝑛 𝑥𝑖. This is 

∫ Pr(𝑌𝑖|𝑥𝑖) 𝑑𝑌𝑖 = 1 

Because we are integrating over all possible values of 𝑌𝑖 𝑔𝑖𝑣𝑒𝑛 𝛽, 𝑥𝑖 so the total probability is 

1. Conditional on x, all idnviiduals with missing Y thus contribute 1 to the likelihood for 𝛽, 

and so have no effect on, or information about the maximum likelihood estimate of 𝛽. 

For linear regression there is no information on the regression because the parameter space 

of the conditional distribution of Y given X is sperate from that of the marginal distribution 

for X. In other words, the mean and the variance of X have no information on, and place no 

restriction on, the parameters of the distribution of Y│X.  Equivalently, the conditional 
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distribution of Pr(Y│X) has no information on, and places no restriction on, the marginal 

distribution of X.  

Generalised Estimating Equations (GEEs) 

Chapter One 

All GEE models consider an estimating equation that is written in two parts. The first part 

estimates the regression parameters, and the second estimates the association parameters or 

the parameters of the second order variance distribution.  

A short review of generalized linear models 

Generalised estimating equations (GEE), is traditionally presented as an extension to the 

standard array of Generalised Linear Models (GLMs) as initially constructed by 

Wedderburn and Nelder in the mid-1970s. As such, we provide an overview of GLM and 

discuss the various ways that GLMs are extended to allow the modelling of correlated data.  

GLMs as Likelihood-based Models 

GLMs are based on the assumption that individual subjects or observations are 

independent. This assumption is commonly referred to as the iid requirement, i.e., 

observations are independent and identically distributed. There are, however, many 

instances in which responses are correlated.  

In the late 1970s, John Nelder designed the first commercial software developed exclusively 

for GLMs called GLIM.  

GLMs and correlated data 

Later, Nelder introduced capabilities into GLIM that allowed for the adjustment of the 

variance-covariance or Hessian matrix so that the effects of extra correlation in the data 

would be taken into account with respect to standard errors. This was accomplished 

through estimation of the dispersion statistic.  

 

There are two types of dispersion statistic in GLM modelling. The first is based on the 

deviance statistic; the second one the Pearson 𝑋2. The overall model deviance and Pearson 
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𝑋2 statistics are summary measures of model fit that are traditionally included in model 

output.  

The deviance dispersion is derived by dividing the deviance statistic by the model residual 

degrees of freedom. Likewise, the Pearson 𝑋2 statistic is calculated by dividing the 

summary Pearson 𝑋2 by the same model degrees of freedom. The residual degrees of 

freedom is itself defined as (n-p) where n is the number of cases in the model and p refers 

to the number of model predictors, including a constant if applicable.  

Depending on the type of correlation effect, we characterize response data on counts and 

binomial trials as under or overdispersed.  

The earliest method used to adjust standard errors due to perceived correlation effects was 

to multiply each parameter standard error by the square root of the Pearson 𝑋2 dispersion 

statistic. This is a process called the scaling of standard errors. It is also a post-estimation 

technique that has no effect on the fitted regression coefficients.  

GLMs and overdispersed data 

A dispersion statistic of greater than 1.0 indicates possible extra correlation in the data. 

Scaling is an attempt to adjust the standard errors to values that would be observed if the 

data were not overdispersed. That is, scaling provides standard errors that would be 

obtained if the dispersion statistic were 1.0.  

There are occasions when a model may appear to be overdispersed when in fact it is not. 

For instance, if the deviance based dispersion of a Poisson model is greater than 1.0, this 

provides prima facie evidence that the model is overdispersed. In practice, analysts 

typically start terming a model as overdispersed when the dispersion statistic is above 1.5 

and the number of cases in the model is large.  

A model may also be what we term apparently overdispersed. Apparent overdispersion 

occurs when a model omits relevant explanatory predictors, or when the data contain 

influential and possibly mistakenly coded outliers, or when the model has failed to account 

for needed interaction terms, or when one or more predictors need to be transformed to 

another scale, or when the assumed linear relationship between the response and 

predictors is in fact some other relationship. If any of these are true, then this can lead to an 

inflation of the dispersion statistic.  
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The manner in which overdispersion is dealt with in large part depends on the perceived 

source of overdispersion. Standard methods include; scaling, using robust variance 

estimators, or implementing models that internally adjust for correlated data.  

Scaling Standard Errors 

Scaling standard errors is a post hoc method of analyzing correlated data and only adjusts 

standard errors. The major deficiency is that it does not capture, or appropriately adjust for, 

an identified cluster or correlation effect. The method simply provides an overall 

adjustment.  

The modified sandwich variance estimator  

This method is also post-hoc and only affects standard errors, and not the parameters 

themselves. The scaling matrix adjusts the Hessian matrix at the next algorithm iteration. 

Each subsequent iteration in the algorithm updates the parameter estimates, the adjusted 

Hessian matrix, and a matrix of scales. 

The basics of GLMs 

Many models now integrated into the GLM framework were previously estimated using 

maximum likelihood methods. Examples include; logistic, Poisson, and probit regression.  

Wedderburn and Nelder discovered that the methods used to estimate weighted linear 

regression could be adjusted to model many data situations that were previously estimated 

via maximum likelihood, particularly for those likelihood models based on exponential 

family distributions. They accomplished this by applying Iterative Weighted Least Squares 

(IWLS). In addition, they employed a link function which linearized such functions as the 

logistic, probit, and log. The IWLS was later renamed to IRLS, meaning Iterative Re-

weighted Least Squares. 

The algorithm takes advantage of forms of variance estimates available from Fisher scoring 

to develop an easy framework from which computer code can be developed. Later, when 

computer memory and power become more available, GLM algorithm was extended to 

include Newton-Raphson based estimation.  

Generalised Linear Models are based on the exponential family of distributions, of which 

include Gaussian or normal, binomial, gamma, inverse Gaussian, Poisson, geometric, and 

negative binomial. The GEE extension for GLM focused on traditional Gaussian, binomial, 

gamma and Poisson family members. 
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All members of the traditional class of generalized linear models are based on one of the 

above probability functions. The likelihood function is simply a re-parameterization of the 

probability function or density. A probability function estimates a probability based on 

given location and scale parameters. A likelihood function, on the other hand, estimates the 

parameters on the basis of given probabilities or means. The idea is that the likelihood 

estimates parameters that make the observed data most probable or likely. Statisticians use 

the log transform of the likelihood, however, because it is (usually) more tractable to use in 

computer estimation. More detailed justification can be found in Gould, Pitblado, and Poi 

(2010). 

Members of the exponential family of distributions have the unique property that their 

likelihood formulation may be expressed as 

 

𝑒𝑥𝑝 {
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
− 𝑐(𝑦, 𝜙)} 

 

The expected value of the exponential family distribution is related to the outcome variable 

of interest. There is a natural connection between these two quantities that allows us to 

introduce covariates into the model in place of the expected value. This connection is the 𝜃 

parameter. When a particular distribution is written in exponential family form, the 𝜃 

parameter is represented by some monotonic differentiable function of the expected value 

𝜇. This function links the outcome variable y to the expected value 𝜇. The particular 

function that results from writing a distributional in exponential form is called the 

canonical link.  

For any member of the exponential family of distributions, there is a general link function, 

called the canonical link, that relates the linear predictor 𝜂 = 𝑋 to the expected value of 𝜇. 

These canonical links occur when 𝜃 = 𝜂. For the Poisson model, we see that 𝜃 = ln (𝜇), 

implying that the canonical link is given by the log-link 𝜂 = ln(𝜇). Since there is no 

compelling reason that the systematic components of the model should be linear on the 

scale of the canonical link, we can, choose any monotonic differentiable function.  
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Link and variance functions 

The inverse link function is what converts the linear predictor 𝑋̂  into an estimate of the 

expected value 𝜇. Positive outcomes similarly lead analysts to choose inverse link functions 

that transform the linear predictor 𝜂 = 𝑋 to positive values. Some standard choices of link 

and inverse link functions are listed below with variance functions corresponding to 

member distributions in the exponential family are listed below that.  

 

Link Name 

Link Function 

𝜼 = 𝒈(𝝁) 

Inverse Link  

𝝁 = 𝒈−𝟏(𝜼) 

Complementary log-
log  

ln {− ln(1 − 𝜇)} 1 − exp {− exp(𝜂)} 

Identity 𝜇 𝜂 

Inverse square 1/𝜇2 1/√𝜂 

Log ln (𝜇) exp (𝜂) 

Log-log −ln {− ln(𝜇)} exp {− exp(−𝜂)} 

Logit ln (
𝜇

1 − 𝜇
) 𝑒𝜂/(1 + 𝑒𝜂) 

Negative binomial(a) ln (
𝑎𝜇

1 + 𝑎𝜇
) 1/[𝑎(exp(−𝜂) − 1)] 

Probit 𝜙−1(𝜇) 𝜙(𝜂) 

Reciprocal 1/𝜇 1/𝜂 

Standard link and inverse link functions. Binomial data replaces µ with µ/k where k is the number of 

trials for the particular observation. 
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Distribution Variance V(𝝁) 

Bernoulli (1 − ) 

Binomial(k) (1 −


𝑘
) 

Gamma 2 

Gaussian 1 

Inverse Gaussian 3 

Negative Binomial  + 𝑘2 

Poisson  

Variance functions for distributions in the exponential family 

Model Construction and Estimating Equations 

Independent Data 

A common introduction to likelihood-based model construction involves serval standard 

steps which follow: 

- Choose a distribution for the outcome variable 

- Write the join distribution for the dataset 

- Convert the joint distribution to a likelihood 

- Generalize the likelihood via introduction of a linear combination of covariates and 

associated coefficients 

- Parameterize the linear combination of covariates to enforce range restrictions on the 

mean and variance implied by the distribution  

- Write the estimating equation for the solution of unknown parameters 



90 | P a g e  
 

Optimization 

Once the model is derived, we may choose to estimate the fully specified log-likelihood 

with any extra parameters, or we may consider those extra parameters ancillary to the 

analysis. The former is called full information maximum likelihood (FIML); the latter is 

called limited information maximum likelihood (LIML). Estimation may then be carried out 

using an optimization method- most common of which being the Newton-Raphson and 

iteratively reweighted least squares algorithms (IRLS). 

The FIML estimating equation for linear regression 

Assuming we have a dataset where the outcome variable of interest is effectively 

continuous with a large range. In this situation the normal Gaussian distribution is 

typically used as the foundation for estimation. The density for the normal distribution 

𝑁(𝜇, 𝜎2)𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: 

𝑓(𝑦|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 {

(𝑦 − 𝜇)2

2𝜎2
} 

Where 

𝐸(𝑦) = 𝜇 𝜖 𝑅 

𝑉(𝑦) = 𝜎2 > 0 

And R indicates the range of real numbers. The density for a single outcome is then 

𝑓(𝑦𝑖|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 {

(𝑦𝑖 − 𝜇)2

2𝜎2
} 

The joint density for n independent outcomes subscripted from 1,…, n is the product of the 

densities for the individual outcomes 

𝑓(𝑦1, … , 𝑦𝑛|𝜇, 𝜎2) = ∏
1

√2𝜋𝜎2

𝑛

𝑖=1

𝑒𝑥𝑝 {
(𝑦𝑖 − 𝜇)2

2𝜎2
} 

                                   = ∏ 𝑒𝑥𝑝 {−
1

2
ln(2𝜋𝜎2) −

(𝑦𝑖 − 𝜇)2

2𝜎2
}

𝑛

𝑖=1

 

The likelihood is simply a restatement of the join density where we consider the outcomes 

as given, and model the parameters as unknown.  
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For More Information:  

This package of information regarding statistics and methodology is not a wholly original 

piece. It is better regarded as an anthology of various books that I have taken from and 

stuck together to make a comprehensive guide to statistical and advanced statistical theory.  

The basic statistical theory is all gathered from Agresti’s intro to statistical theory. 

Missing data is taken from Carpenter and Kenward’s Multiple Imputation and its 

application.  

Count Models is taken from Hilbe’s Modelling Count Data 

Fixed Effects is taken from Allison’s Fixed Effects Regression Models.  

Generalised Estimating Equations is taken from Allison’s of the same name.  

The bulk of the rest is taken from lecture notes from the MSc Sociology advanced 

quantitative statistics course at the University of Oxford.  


